keras获得model中某一层的某一个Tensor的输出维度教程-创新互联
获得某层tensor的输出维度
成都创新互联服务项目包括武乡网站建设、武乡网站制作、武乡网页制作以及武乡网络营销策划等。多年来,我们专注于互联网行业,利用自身积累的技术优势、行业经验、深度合作伙伴关系等,向广大中小型企业、政府机构等提供互联网行业的解决方案,武乡网站推广取得了明显的社会效益与经济效益。目前,我们服务的客户以成都为中心已经辐射到武乡省份的部分城市,未来相信会继续扩大服务区域并继续获得客户的支持与信任!代码如下所示:
from keras import backend as K @wraps(Conv2D) def my_conv(*args,**kwargs): new_kwargs={'kernel_regularizer':l2(5e-6)} new_kwargs['padding']='valid' #'same' new_kwargs['strides']=(2,2) if kwargs.get('strides')==(2,2) else (1,1) # new_kwargs['kernel_initializer']=keras.initializers.glorot_uniform(seed=0) new_kwargs.update(kwargs) return Conv2D(*args,**new_kwargs) def conv(x,**kwargs): x=my_conv(**kwargs)(x) x=BatchNormalization(axis=-1)(x) x=LeakyReLU(alpha=0.05)(x) return x def inception_resnet_a(x_input): x_short=x_input s1=conv(x_input,filters=32,kernel_size=(1,1)) s2=conv(x_input,filters=32,kernel_size=(1,1)) s2=conv(s2,filters=32,kernel_size=(3,3),padding='same') s3=conv(x_input,filters=32,kernel_size=(1,1)) s3=conv(s3,filters=48,kernel_size=(3,3),padding='same') s3=conv(s3,filters=64,kernel_size=(3,3),padding='same') x=keras.layers.concatenate([s1,s2,s3]) x=conv(x,filters=384,kernel_size=(1,1)) x=layers.Add()([x_short,x]) x=LeakyReLU(alpha=0.05)(x) print(K.int_shape(x))
另外有需要云服务器可以了解下创新互联scvps.cn,海内外云服务器15元起步,三天无理由+7*72小时售后在线,公司持有idc许可证,提供“云服务器、裸金属服务器、高防服务器、香港服务器、美国服务器、虚拟主机、免备案服务器”等云主机租用服务以及企业上云的综合解决方案,具有“安全稳定、简单易用、服务可用性高、性价比高”等特点与优势,专为企业上云打造定制,能够满足用户丰富、多元化的应用场景需求。
文章标题:keras获得model中某一层的某一个Tensor的输出维度教程-创新互联
分享地址:http://myzitong.com/article/ceiesh.html