python中numpy的矩阵、多维数组的用法-创新互联

1. 引言

创新互联公司长期为上千多家客户提供的网站建设服务,团队从业经验10年,关注不同地域、不同群体,并针对不同对象提供差异化的产品和服务;打造开放共赢平台,与合作伙伴共同营造健康的互联网生态环境。为浦北企业提供专业的网站建设、成都网站设计浦北网站改版等技术服务。拥有十余年丰富建站经验和众多成功案例,为您定制开发。

最近在将一个算法由matlab转成python,初学python,很多地方还不熟悉,总体感觉就是上手容易,实际上很优雅地用python还是蛮难的。目前为止,觉得就算法仿真研究而言,还是matlab用得特别舒服,可能是比较熟悉的缘故吧。matlab直接集成了很多算法工具箱,函数查询、调用、变量查询等非常方便,或许以后用久了python也会感觉很好用。与python相比,最喜欢的莫过于可以直接选中某段代码执行了,操作方便,python也可以实现,就是感觉不是很方便。

言归正传,做算法要用到很多的向量和矩阵运算操作,这些嘛在matlab里面已经很熟悉了,但用python的时候需要用一个查一个,挺烦的,所以在此稍作总结,后续使用过程中会根据使用体验更新。

python的矩阵运算主要依赖numpy包,scipy包以numpy为基础,大大扩展了后者的运算能力。

2. 创建一般的多维数组

import numpy as np

a = np.array([1,2,3], dtype=int) # 创建1*3维数组 array([1,2,3])

type(a) # numpy.ndarray类型

a.shape # 维数信息(3L,)

a.dtype.name # 'int32'

a.size # 元素个数:3

a.itemsize #每个元素所占用的字节数目:4

b=np.array([[1,2,3],[4,5,6]],dtype=int) # 创建2*3维数组 array([[1,2,3],[4,5,6]])

b.shape # 维数信息(2L,3L)

b.size # 元素个数:6

b.itemsize # 每个元素所占用的字节数目:4


c=np.array([[1,2,3],[4,5,6]],dtype='int16') # 创建2*3维数组 array([[1,2,3],[4,5,6]],dtype=int16)

c.shape # 维数信息(2L,3L)

c.size # 元素个数:6

c.itemsize # 每个元素所占用的字节数目:2

c.ndim # 维数

 
d=np.array([[1,2,3],[4,5,6]],dtype=complex) # 复数二维数组

d.itemsize # 每个元素所占用的字节数目:16

d.dtype.name # 元素类型:'complex128'

另外有需要云服务器可以了解下创新互联scvps.cn,海内外云服务器15元起步,三天无理由+7*72小时售后在线,公司持有idc许可证,提供“云服务器、裸金属服务器、高防服务器、香港服务器、美国服务器、虚拟主机、免备案服务器”等云主机租用服务以及企业上云的综合解决方案,具有“安全稳定、简单易用、服务可用性高、性价比高”等特点与优势,专为企业上云打造定制,能够满足用户丰富、多元化的应用场景需求。


网站标题:python中numpy的矩阵、多维数组的用法-创新互联
文章路径:http://myzitong.com/article/ceojds.html