php每秒大数据量处理 php处理大数据用什么方法

PHP如何解决网站的大数据大流量与高并发

可以采用数据库缓存、事务缓存等技巧。还可以从架构上把事务做合理的分配,花钱扩充你的硬件设施等。比如,阿里巴巴从最初的1台电脑逐步扩充到过万台电脑了。

创新互联建站于2013年成立,先为凉城等服务建站,凉城等地企业,进行企业商务咨询服务。为凉城企业网站制作PC+手机+微官网三网同步一站式服务解决您的所有建站问题。

建立数据库连接池服务,有很多实现的方式,PHP的话,我推荐使用swoole(PHP的一个网络通讯拓展)来实现。

网站页面静态化。静态化的页面为.html(.htm等)不需要web服务器重新加载项解析,只需要生成一次,以后每次都直接下载到客户端,效率高很多。将网站的web服务器、数据库服务器、图片和文件服务器分开。

PHP-大数据量怎么处理优化

1、使用缓存,比如memcache,redis,因为它们是在内存中运行,所以处理数据,返回数据非常快,所以可以应对高并发。

2、1尽量使用数字型字段,若只含数值信息的字段尽量不要设计为字符型,这会降低查询和连接的性能,并会增加存储开销。这是因为引擎在处理查询和连接时会 逐个比较字符串中每一个字符,而对于数字型而言只需要比较一次就够了。

3、这样的结果就是PHP程序消耗较少的内存,但却增加了数据库服务器的压力,因为数据库会一直等待PHP来取数据,一直到数据全部取完。很显然,缓冲查询模式适用于小数据量查询,而非缓冲查询适应于大数据量查询。

4、可以采用MQ,首先将task丢进Q里面,然后给出用户提示,前台页面轮询后台结果。如果数据量过大建议分批处理,拆分成多个task即可。

如何在云数仓中实现实时数据分析?

增加ODS层落地hive,排查分析原始数据比较方便,恢复历史数据的时候可获取hive数据写入kafka,然后按原流处理的逻辑重新处理即可,只需修改数据源为历史数据对应的topic。

大数据实时分析平台(以下简称PB-S),旨在提供数据端到端实时处理能力(毫秒级/秒级/分钟级延迟),可以对接多数据源进行实时数据抽取,可以为多数据应用场景提供实时数据消费。

首先无论你的数据是什么样的,经过我们的处理会把它做成数据标准化,当你的数据实时生成,我们有非常好的数据传输框架,保证你的数据上传到百度的开放云,在上面进行建模,进行各种各样可视化分析和决策的过程。

将数据库中的数据经过抽取、清洗、转换将分散、零乱、标准不统一的数据整合到一起,通过在分析数据库中建模数据来提高查询性能。


新闻名称:php每秒大数据量处理 php处理大数据用什么方法
文章路径:http://myzitong.com/article/dcopccd.html