go语言qps Go语言Web框架对比
使用Go 语言开发大型 MMORPG 游戏伺服器怎么样
使用Go 语言开发大型 MMORPG 游戏伺服器怎么样
主要从事网页设计、PC网站建设(电脑版网站建设)、wap网站建设(手机版网站建设)、响应式网站开发、程序开发、微网站、微信小程序开发等,凭借多年来在互联网的打拼,我们在互联网网站建设行业积累了丰富的成都做网站、成都网站设计、成都外贸网站建设、网络营销经验,集策划、开发、设计、营销、管理等多方位专业化运作于一体,具备承接不同规模与类型的建设项目的能力。
如果是大型网路游戏的话,我觉得是不合适的。现阶段go语言的执行效率还是太低了。在底层编译器的优化方面做得和c++相比还是差了不少。go语言也是比较适合快速开发的专案比较合适
从2013年起,经朋友推荐开始用Golang编写游戏登陆伺服器, 配合C++做第三方平台验证. 到编写独立工具导表工具GitHub - davyxu/tabtoy: 跨平台的高效能便捷电子表格汇出器. 以及网路库GitHub - davyxu/cell: 简单,方便,高效的Go语言的游戏伺服器底层. 最终使用这些工具及库编写整个游戏伺服器框架, 我的感受是很不错的
细节看来, 有如下的几个点:
语言, 库
Golang语言特性和C很像, 简单, 一张A4纸就能写完所有特性. 你想想看, C++到了领悟阶段, 也只用那几个简单特性, 剩下的都是一大堆解决各种记忆体问题的技巧. 而Golang一开始就简单, 何必浪费生命去研究那一大堆的奇技淫巧呢?
Golang的坑只有2个:1. interface{}和nil配合使用, 2. for回圈时, 将回圈变数引入闭包(Golang, Lua, C#闭包变数捕获差异) 完全不影响正常使用, 复合语言概念, 只是看官方后面怎么有效的避免
用Golang就忘记继承那套东西, 用组合+介面
用Golang伺服器如何保证解决游戏伺服器存档一致性问题? s the world是肯定的, 但是Golang可以从语言层并发序列化玩家资料, 再通过后台存档
channel是goroutine虽然是Golang的语言特性. 但是在编写伺服器时, 其实只有底层用的比较多.
Golang的第三方库简直多如牛毛, 好的也很多
不要说模板了, C#的也不好用, 官方在纠结也不要加, 使用中, 没模板确实有点不方便. 用interface{}/反射做泛型对于Golang这种强型别语言来说,还是有点打脸
执行期
Golang和C++比效能的话, 这是C++的优势, Golang因为没虚拟机器, 只有薄薄的一层排程层. 因此效能是非常高的, 用一点效能牺牲换开发效率, 妥妥的
1.6版后的GC优化的已经很好了, 如果你不是高效能,高并发Web应用, 非要找出一堆的优化技巧的话. 只用Golang写点游戏伺服器, 那点GC损耗可以忽略不计
和其他现代语言一样, 崩溃捕捉是标配功能, 我用Golang的伺服器线上跑, 基本没碰到过崩溃情况
热更新: 官方已经有plugin系统的提交, 跨平台的. 估计很快就可以告别手动cgo做so热更新
开发, 除错, 部署, 优化
LiteIDE是我首选的Golang的IDE, 虽然有童鞋说B格不高. 但这估计实在是找不到缺点说了, 别跟我说Visual Studio, 那是宇宙级的...
曾经听说有人不看好Golang, 我问为啥: 说这么新的语言, 不好招人,后面打听到他是个策划... 好吧
真实情况是这样的: Golang对于有点程式设计基础的新人来说, 1周左右可以开始贡献程式码. 老司机2~3天.
开发效率还是不错的, 一般大的游戏功能, 2*2人一周3~4个整完. 这换C++时代, 大概也就1~2个还写不完. 对接伺服器sdk的话, 大概1天接个10多个没问题
Golang自带效能调优工具, 从记忆体, CPU, 阻塞点等几个方面直接出图进行分析, 非常直观, 可以参考我部落格几年前的分析: 使用Golang进行效能分析(Profiling)
Golang支 *** 叉编译, 跨平台部署, 什么概念? linux是吧? 不问你什么版本, 直接windows上编译输出一个elf, 甩到伺服器上开跑.不超过1分钟时间..
1.为什么golang的开发效率高?
golang是一编译型的强型别语言,它在开发上的高效率主要来自于后发优势,不用考虑旧有恶心的历史,又有一个较高的工程视角。良好的避免了程式设计师因为“ { 需不需要独占一行 ”这种革命问题打架,也解决了一部分趁编译时间找产品妹妹搭讪的阶级敌人。
它有自己的包管理机制,工具链成熟,从开发、除错到释出都很简单方便;
有反向介面、defer、coroutine等大量的syntactic sugar;
编译速度快,因为是强型别语言又有gc,只要通过编译,非业务毛病就很少了;
它在语法级别上支援了goroutine,这是大家说到最多的内容,这里重点提一下。首先,coroutine并不稀罕,语言并不能超越硬体、作业系统实现神乎其神的功能。golang可以做到事情,其他语言也可以做到,譬如c++,在boost库里面自己就有的coroutine实现(当然用起来跟其他boost库一样恶心)。golang做的事情,是把这一套东西的使用过程简化了,并且提供了一套channel的通讯模式,使得程式设计师可以忽略诸如死锁等问题。
goroutine的目的是描述并发程式设计模型。并发与并行不同,它并不需要多核的硬体支援,它不是一种物理执行状态,而是一种程式逻辑流程。它的主要目的不是利用多核提高执行效率,而是提供一种更容易理解、不容易出错的语言来描述问题。
实际上golang预设就是执行在单OS程序上面的,通过指定环境变数GOMAXPROCS才能转身跑在多OS程序上面。有人提到了网易的pomelo,开源本来是一件很不错的事情,但是基于自己对callback hell的偏见,我一直持有这种态度:敢用nodejs写大规模游戏伺服器的人,都是真正的勇士 : ) 。
2、Erlang与Golang的coroutine有啥区别,coroutine是啥?
coroutine本质上是语言开发者自己实现的、处于user space内的执行绪,无论是erlang、还是golang都是这样。需要解决没有时钟中断;碰著阻塞式i\o,整个程序都会被作业系统主动挂起;需要自己拥有排程控制能力(放在并行环境下面还是挺麻烦的一件事)等等问题。那为啥要废老大的劲自己做一套执行绪放user space里面呢?
并发是伺服器语言必须要解决的问题;
system space的程序还有执行绪排程都太慢了、占用的空间也太大了。
把执行绪放到user space的可以避免了陷入system call进行上下文切换以及高速缓冲更新,执行绪本身以及切换等操作可以做得非常的轻量。这也就是golang这类语言反复提及的超高并发能力,分分钟给你开上几千个执行绪不费力。
不同的是,golang的并发排程在i/o等易发阻塞的时候才会发生,一般是内封在库函式内;erlang则更夸张,对每个coroutine维持一个计数器,常用语句都会导致这个计数器进行reduction,一旦到点,立即切换排程函式。
中断介入程度的不同,导致erlang看上去拥有了preemptive scheduling的能力,而golang则是cooperative shceduling的。golang一旦写出纯计算死回圈,程序内所有会话必死无疑;要有大计算量少i\o的函式还得自己主动叫runtime.Sched()来进行排程切换。
3、golang的执行效率怎么样?
我是相当反感所谓的ping\pong式benchmark,执行效率需要放到具体的工作环境下面考虑。
首先,它再快也是快不过c的,毕竟底下做了那么多工作,又有排程,又有gc什么的。那为什么在那些benchmark里面,golang、nodejs、erlang的响应效率看上去那么优秀呢,响应快,并发强?并发能力强的原因上面已经提到了,响应快是因为大量非阻塞式i\o操作出现的原因。这一点c也可以做到,并且能力更强,但是得多写不少优质程式码。
然后,针对游戏伺服器这种高实时性的执行环境,GC所造成的跳帧问题确实比较麻烦,前面的大神 @达达 有比较详细的论述和缓解方案,就不累述了 。随着golang的持续开发,相信应该会有非常大的改进。一是遮蔽记忆体操作是现代语言的大势所趋,它肯定是需要被实现的;二是GC演算法已经相当的成熟,效率勉勉强强过得去;三是可以通过incremental的操作来均摊cpu消耗。
用这一点点效率损失换取一个更高的生产能力是不是值得呢?我觉得是值得的,硬体已经很便宜了,人生苦短,让自己的生活更轻松一点吧: )。
4、基于以上的论述,我认为采用go进行小范围的MMORPG开发是可行的。
如果跟C语言比,大部分指令码都胜出啊。Go, Node.js, Python ......
网易弄过一个Node.js的开源伺服器框架。
至于IDE, 不重要,做伺服器开发很少会要开着IDE除错的。最常用的手段就是打Log. 设定了断点也很难调,多个客户端并发。
那种单客户端连线进来就可以重现的bug倒是可以用IDE调,但是这种bug本来就容易解决。
用指令码语言,有一个很大的好处是容易做自动测试,可以更好地保证程式码质量。
--------------------------
开发效率当然是指令码高。执行效率,其实更重要的是并发,框架合理的话增加机器就可以直接提高效率增加人数。
用Go开发大型mmorpg服务端不会有问题的,如果掉坑里肯定不会是语言的问题。
唯一比较可能掉进去的坑就只有GC,其实很容易预防和调整的,具体细节可以看我部落格分享的文章。
但是技术选型不只是选语言,如果当时我手头有一套效能满意,开发效率OK,人员补给不会有问题的技术方案,不管是什么语言的,我肯定不会放弃它而选择冒险的。
public void actionPerformed(ActionEvent e)
{
if(e.getSource()==xinjian)
{
text.setText("");
}
if(e.getSource()==dakai)
{
openFD.show();
String s;
golang比java好,会取代java,你们认可吗?
Go和java产生的背景和语言的定义不一样,比较他们的好坏没多大意义,适合就是最好的,当你去做一个大型的项目的时候,使用java能够更清晰地展示出你的业务。自身提供了比较完善的库。
Go语言也有面向函数和面向对象的变成方案,其自身的性能决定了go语言更适合做中间件,底层的各种框架。
语言对企业来说,是制造生产力的,哪种语言能够给我们带来更好的收益,我们才选择它们。
如何在 Go 语言中使用 Redis 连接池
一、关于连接池
一个数据库服务器只拥有有限的资源,并且如果你没有充分使用这些资源,你可以通过使用更多的连接来提高吞吐量。一旦所有的资源都在使用,那么你就不 能通过增加更多的连接来提高吞吐量。事实上,吞吐量在连接负载较大时就开始下降了。通常可以通过限制与可用的资源相匹配的数据库连接的数量来提高延迟和吞 吐量。
如何在Go语言中使用Redis连接池
如果不使用连接池,那么,每次传输数据,我们都需要进行创建连接,收发数据,关闭连接。在并发量不高的场景,基本上不会有什么问题,一旦并发量上去了,那么,一般就会遇到下面几个常见问题:
性能普遍上不去
CPU 大量资源被系统消耗
网络一旦抖动,会有大量 TIME_WAIT 产生,不得不定期重启服务或定期重启机器
服务器工作不稳定,QPS 忽高忽低
要想解决这些问题,我们就要用到连接池了。连接池的思路很简单,在初始化时,创建一定数量的连接,先把所有长连接存起来,然后,谁需要使用,从这里取走,干完活立马放回来。 如果请求数超出连接池容量,那么就排队等待、退化成短连接或者直接丢弃掉。
二、使用连接池遇到的坑
最近在一个项目中,需要实现一个简单的 Web Server 提供 Redis 的 HTTP interface,提供 JSON 形式的返回结果。考虑用 Go 来实现。
首先,去看一下 Redis 官方推荐的 Go Redis driver。官方 Star 的项目有两个:Radix.v2 和 Redigo。经过简单的比较后,选择了更加轻量级和实现更加优雅的 Radix.v2。
Radix.v2 包是根据功能划分成一个个的 sub package,每一个 sub package 在一个独立的子目录中,结构非常清晰。我的项目中会用到的 sub package 有 redis 和 pool。
由于我想让这种被 fork 的进程最好简单点,做的事情单一一些,所以,在没有深入去看 Radix.v2 的 pool 的实现之前,我选择了自己实现一个 Redis pool。(这里,就不贴代码了。后来发现自己实现的 Redis pool 与 Radix.v2 实现的 Redis pool 的原理是一样的,都是基于 channel 实现的, 遇到的问题也是一样的。)
不过在测试过程中,发现了一个诡异的问题。在请求过程中经常会报 EOF 错误。而且是概率性出现,一会有问题,一会又好了。通过反复的测试,发现 bug 是有规律的,当程序空闲一会后,再进行连续请求,会发生3次失败,然后之后的请求都能成功,而我的连接池大小设置的是3。再进一步分析,程序空闲300秒 后,再请求就会失败,发现我的 Redis server 配置了 timeout 300,至此,问题就清楚了。是连接超时 Redis server 主动断开了连接。客户端这边从一个超时的连接请求就会得到 EOF 错误。
然后我看了一下 Radix.v2 的 pool 包的源码,发现这个库本身并没有检测坏的连接,并替换为新server{location/pool{content_by_lua_block{localredis=require"resty.redis"localred=redis:new()localok,err=red:connect("127.0.0.1",6379)ifnotokthenngx.say("failedtoconnect:",err)returnendok,err=red:set("hello","world")ifnotokthenreturnendred:set_keepalive(10000,100)}}}
发现有个 set_keepalive 的方法,查了一下官方文档,方法的原型是 syntax: ok, err = red:set_keepalive(max_idle_timeout, pool_size) 貌似 max_idle_timeout 这个参数,就是我们所缺少的东西,然后进一步跟踪源码,看看里面是怎么保证连接有效的。
function_M.set_keepalive(self,...)localsock=self.sockifnotsockthenreturnnil,"notinitialized"endifself.subscribedthenreturnnil,"subscribedstate"endreturnsock:setkeepalive(...)end
至此,已经清楚了,使用了 tcp 的 keepalive 心跳机制。
于是,通过与 Radix.v2 的作者一些讨论,选择自己在 redis 这层使用心跳机制,来解决这个问题。
四、最后的解决方案
在创建连接池之后,起一个 goroutine,每隔一段 idleTime 发送一个 PING 到 Redis server。其中,idleTime 略小于 Redis server 的 timeout 配置。连接池初始化部分代码如下:
p,err:=pool.New("tcp",u.Host,concurrency)errHndlr(err)gofunc(){for{p.Cmd("PING")time.Sleep(idelTime*time.Second)}}()
使用 redis 传输数据部分代码如下:
funcredisDo(p*pool.Pool,cmdstring,args...interface{})(reply*redis.Resp,errerror){reply=p.Cmd(cmd,args...)iferr=reply.Err;err!=nil{iferr!=io.EOF{Fatal.Println("redis",cmd,args,"erris",err)}}return}
其中,Radix.v2 连接池内部进行了连接池内连接的获取和放回,代码如下:
//Cmdautomaticallygetsoneclientfromthepool,executesthegivencommand//(returningitsresult),andputstheclientbackinthepoolfunc(p*Pool)Cmd(cmdstring,args...interface{})*redis.Resp{c,err:=p.Get()iferr!=nil{returnredis.NewResp(err)}deferp.Put(c)returnc.Cmd(cmd,args...)}
这样,我们就有了 keepalive 的机制,不会出现 timeout 的连接了,从 redis 连接池里面取出的连接都是可用的连接了。看似简单的代码,却完美的解决了连接池里面超时连接的问题。同时,就算 Redis server 重启等情况,也能保证连接自动重连。
文章名称:go语言qps Go语言Web框架对比
文章链接:http://myzitong.com/article/ddijcpo.html