KerasDense层的详解-创新互联

这篇文章主要讲解了Keras Dense层的详解,内容清晰明了,对此有兴趣的小伙伴可以学习一下,相信大家阅读完之后会有帮助。

创新互联坚持“要么做到,要么别承诺”的工作理念,服务领域包括:成都网站建设、网站设计、企业官网、英文网站、手机端网站、网站推广等服务,满足客户于互联网时代的鼓楼网站设计、移动媒体设计的需求,帮助企业找到有效的互联网解决方案。努力成为您成熟可靠的网络建设合作伙伴!

我就废话不多说了,大家还是直接看代码吧!

'''
Created on 2018-4-4

'''
keras.layers.core.Dense(
units, #代表该层的输出维度
activation=None, #激活函数.但是默认 liner
use_bias=True, #是否使用b
kernel_initializer='glorot_uniform', #初始化w权重,keras/initializers.py
bias_initializer='zeros', #初始化b权重
kernel_regularizer=None, #施加在权重w上的正则项,keras/regularizer.py
bias_regularizer=None, #施加在偏置向量b上的正则项
activity_regularizer=None, #施加在输出上的正则项
kernel_constraint=None, #施加在权重w上的约束项
bias_constraint=None #施加在偏置b上的约束项
)

# 所实现的运算是output = activation(dot(input, kernel)+bias)
# model.add(Dense(units=64, activation='relu', input_dim=784))

# keras初始化所有激活函数,activation:
# keras\activations.py
# keras\backend\cntk_backend.py
# import cntk as C
# 1.softmax:
#       对输入数据的最后一维进行softmax,一般用在输出层;
#   ndim == 2,K.softmax(x),其实调用的是cntk,是一个模块;
#   ndim >= 2,e = K.exp(x - K.max(x)),s = K.sum(e),return e / s
# 2.elu
#   K.elu(x)
# 3.selu: 可伸缩的指数线性单元
#   alpha = 1.6732632423543772848170429916717
#   scale = 1.0507009873554804934193349852946
#   return scale * K.elu(x, alpha)
# 4.softplus
#   C.softplus(x)
# 5.softsign
#   return x / (1 + C.abs(x))
# 6.relu
#   def relu(x, alpha=0., max_value=None):
#     if alpha != 0.:
#       negative_part = C.relu(-x)
#     x = C.relu(x)
#     if max_value is not None:
#       x = C.clip(x, 0.0, max_value)
#     if alpha != 0.:
#       x -= alpha * negative_part
#     return x
# 7.tanh
#   return C.tanh(x)
# 8.sigmoid
#   return C.sigmoid(x)
# 9.hard_sigmoid
#   x = (0.2 * x) + 0.5
#   x = C.clip(x, 0.0, 1.0)
#   return x
# 10.linear
#   return x

# keras初始化所有方法,initializer:
# Zeros
# Ones
# Constant(固定一个值)
# RandomNormal(正态分布)
# RandomUniform(均匀分布)
# TruncatedNormal(截尾高斯分布,神经网络权重和滤波器的推荐初始化方法)
# VarianceScaling(该初始化方法能够自适应目标张量的shape)
# Orthogonal(随机正交矩阵初始化)
# Identiy(单位矩阵初始化,仅适用于2D方阵)
# lecun_uniform(LeCun均匀分布初始化)
# lecun_normal(LeCun正态分布初始化)
# glorot_normal(Glorot正态分布初始化)
# glorot_uniform(Glorot均匀分布初始化)
# he_normal(He正态分布初始化)
# he_uniform(He均匀分布初始化,Keras中文文档写错了)

# keras正则化,regularizer:
# import backend as K
# L1: regularization += K.sum(self.l1 * K.abs(x))
# L2: regularization += K.sum(self.l2 * K.square(x))

另外有需要云服务器可以了解下创新互联scvps.cn,海内外云服务器15元起步,三天无理由+7*72小时售后在线,公司持有idc许可证,提供“云服务器、裸金属服务器、高防服务器、香港服务器、美国服务器、虚拟主机、免备案服务器”等云主机租用服务以及企业上云的综合解决方案,具有“安全稳定、简单易用、服务可用性高、性价比高”等特点与优势,专为企业上云打造定制,能够满足用户丰富、多元化的应用场景需求。


网页题目:KerasDense层的详解-创新互联
链接分享:http://myzitong.com/article/ddpdes.html