mysql怎么锁定某张表 mysql如何锁定一行
MySQL从入门到精通(九) MySQL锁,各种锁
锁是计算机协调多个进程或线程并发访问某一资源的机制,在数据库中,除传统的计算资源(CPU、RAM、I/O)争用外,数据也是一种供许多用户共享的资源,如何保证数据并发访问的一致性,有效性是所有数据库必须解决的一个问题,锁冲突也是影响数据库并发访问性能的一个重要因素,从这个角度来说,锁对数据库而言是尤其重要,也更加复杂。MySQL中的锁,按照锁的粒度分为:1、全局锁,就锁定数据库中的所有表。2、表级锁,每次操作锁住整张表。3、行级锁,每次操作锁住对应的行数据。
创新互联拥有10余年的建站服务经验,在此期间,我们发现较多的客户在挑选建站服务商前都非常的犹豫。主要问题集中:在无法预知自己的网站呈现的效果是什么样的?也无法判断选择的服务商设计出来的网页效果自己是否会满意?创新互联业务涵盖了互联网平台网站建设、移动平台网站制作、网络推广、按需制作等服务。创新互联网站开发公司本着不拘一格的网站视觉设计和网站开发技术相结合,为企业做网站提供成熟的网站设计方案。
全局锁就是对整个数据库实例加锁,加锁后整个实例就处于只读状态,后续的DML的写语句,DDL语句,已经更新操作的事务提交语句都将阻塞。其典型的使用场景就是做全库的逻辑备份,对所有的表进行锁定,从而获取一致性视图,保证数据的完整性。但是对数据库加全局锁是有弊端的,如在主库上备份,那么在备份期间都不能执行更新,业务会受影响,第二如果是在从库上备份,那么在备份期间从库不能执行主库同步过来的二进制日志,会导致主从延迟。
解决办法是在innodb引擎中,备份时加上--single-transaction参数来完成不加锁的一致性数据备份。
添加全局锁: flush tables with read lock; 解锁 unlock tables。
表级锁,每次操作会锁住整张表.锁定粒度大,发送锁冲突的概率最高,并发读最低,应用在myisam、innodb、BOB等存储引擎中。表级锁分为: 表锁、元数据锁(meta data lock, MDL)和意向锁。
表锁又分为: 表共享读锁 read lock、表独占写锁write lock
语法: 1、加锁 lock tables 表名 ... read/write
2、释放锁 unlock tables 或者关闭客户端连接
注意: 读锁不会阻塞其它客户端的读,但是会阻塞其它客户端的写,写锁既会阻塞其它客户端的读,又会阻塞其它客户端的写。大家可以拿一张表来测试看看。
元数据锁,在加锁过程中是系统自动控制的,无需显示使用,在访问一张表的时候会自动加上,MDL锁主要作用是维护表元数据的数据一致性,在表上有活动事务的时候,不可以对元数据进行写入操作。为了避免DML和DDL冲突,保证读写的正确性。
在MySQL5.5中引入了MDL,当对一张表进行增删改查的时候,加MDL读锁(共享);当对表结构进行变更操作时,加MDL写锁(排他).
查看元数据锁:
select object_type,object_schema,object_name,lock_type,lock_duration from performance_schema_metadata_locks;
意向锁,为了避免DML在执行时,加的行锁与表锁的冲突,在innodb中引入了意向锁,使得表锁不用检查每行数据是否加锁,使用意向锁来减少表锁的检查。意向锁分为,意向共享锁is由语句select ... lock in share mode添加。意向排他锁ix,由insert,update,delete,select。。。for update 添加。
select object_schema,object_name,index_name,lock_type,lock_mode,lock_data from performance_schema.data_lock;
行级锁,每次操作锁住对应的行数据,锁定粒度最小,发生锁冲突的概率最高,并发读最高,应用在innodb存储引擎中。
innodb的数据是基于索引组织的,行锁是通过对索引上的索引项加锁来实现的,而不是对记录加的锁,对于行级锁,主要分为以下三类:
1、行锁或者叫record lock记录锁,锁定单个行记录的锁,防止其他事物对次行进行update和delete操作,在RC,RR隔离级别下都支持。
2、间隙锁Gap lock,锁定索引记录间隙(不含该记录),确保索引记录间隙不变,防止其他事物在这个间隙进行insert操作,产生幻读,在RR隔离级别下都支持。
3、临键锁Next-key-lock,行锁和间隙锁组合,同时锁住数据,并锁住数据前面的间隙Gap,在RR隔离级别下支持。
innodb实现了以下两种类型的行锁
1、共享锁 S: 允许一个事务去读一行,阻止其他事务获得相同数据集的排他锁。
2、排他锁 X: 允许获取排他锁的事务更新数据,阻止其他事务获得相同数据集的共享锁和排他锁。
insert 语句 排他锁 自动添加的
update语句 排他锁 自动添加
delete 语句 排他锁 自动添加
select 正常查询语句 不加锁 。。。
select 。。。lock in share mode 共享锁 需要手动在select 之后加lock in share mode
select 。。。for update 排他锁 需要手动在select之后添加for update
默认情况下,innodb在repeatable read事务隔离级别运行,innodb使用next-key锁进行搜索和索引扫描,以防止幻读。
间隙锁唯一目的是防止其它事务插入间隙,间隙锁可以共存,一个事务采用的间隙锁不会阻止另一个事务在同一间隙上采用的间隙锁。
在MYSQL里,要怎么才可以做到锁定一条记录
你说的锁定是什么意思,禁止修改,禁止删除,禁止更新,是么,如果是的话,你可以在mysql里面建立一个触发器来禁止删除,下面一个示例,直接在mysql命令行执行一次就好了,永久性的,不需要重复执行
DROP TRIGGER IF EXISTS m;
CREATE TRIGGER 触发器名字 AFTER DELETE ON 表名 FOR EACH ROW
BEGIN
DECLARE msg VARCHAR (255);
IF old.count = 1 THEN -- old为伪记录
SET msg = "超级管理员不能被删除";
SIGNAL SQLSTATE 'HY000' SET mysql_errno = 22, message_text = msg;-- HY000为系统内部错误号,22为自定义的显示错误号,msg为错误文本
END IF;
END;
MYSQL insert into select 锁表问题
加锁情况与死锁原因分析
为方便大家复现,完整表结构和数据如下:
CREATE TABLE `t3` (
`c1` int(11) NOT NULL AUTO_INCREMENT,
`c2` int(11) DEFAULT NULL,
PRIMARY KEY (`c1`),
UNIQUE KEY `c2` (`c2`)
) ENGINE=InnoDB
insert into t3 values(1,1),(15,15),(20,20);
在 session1 执行 commit 的瞬间,我们会看到 session2、session3 的其中一个报死锁。这个死锁是这样产生的:
1. session1 执行 delete 会在唯一索引 c2 的 c2 = 15 这一记录上加 X lock(也就是在MySQL 内部观测到的:X Lock but not gap);
2. session2 和 session3 在执行 insert 的时候,由于唯一约束检测发生唯一冲突,会加 S Next-Key Lock,即对 (1,15] 这个区间加锁包括间隙,并且被 seesion1 的 X Lock 阻塞,进入等待;
3. session1 在执行 commit 后,会释放 X Lock,session2 和 session3 都获得 S Next-Key Lock;
4. session2 和 session3 继续执行插入操作,这个时候 INSERT INTENTION LOCK(插入意向锁)出现了,并且由于插入意向锁会被 gap 锁阻塞,所以 session2 和 session3 互相等待,造成死锁。
死锁日志如下:
请点击输入图片描述
INSERT INTENTION LOCK
在之前的死锁分析第四点,如果不分析插入意向锁,也是会造成死锁的,因为插入最终还是要对记录加 X Lock 的,session2 和 session3 还是会互相阻塞互相等待。
但是插入意向锁是客观存在的,我们可以在官方手册中查到,不可忽略:
Prior to inserting the row, a type of gap lock called an insert intention gap lock is set. This lock signals the intent to insert in such a way that multiple transactions inserting into the same index gap need not wait for each other if they are not inserting at the same position within the gap.
插入意向锁其实是一种特殊的 gap lock,但是它不会阻塞其他锁。假设存在值为 4 和 7 的索引记录,尝试插入值 5 和 6 的两个事务在获取插入行上的排它锁之前使用插入意向锁锁定间隙,即在(4,7)上加 gap lock,但是这两个事务不会互相冲突等待。
当插入一条记录时,会去检查当前插入位置的下一条记录上是否存在锁对象,如果下一条记录上存在锁对象,就需要判断该锁对象是否锁住了 gap。如果 gap 被锁住了,则插入意向锁与之冲突,进入等待状态(插入意向锁之间并不互斥)。总结一下这把锁的属性:
1. 它不会阻塞其他任何锁;
2. 它本身仅会被 gap lock 阻塞。
在学习 MySQL 过程中,一般只有在它被阻塞的时候才能观察到,所以这也是它常常被忽略的原因吧...
GAP LOCK
在此例中,另外一个重要的点就是 gap lock,通常情况下我们说到 gap lock 都只会联想到 REPEATABLE-READ 隔离级别利用其解决幻读。但实际上在 READ-COMMITTED 隔离级别,也会存在 gap lock ,只发生在:唯一约束检查到有唯一冲突的时候,会加 S Next-key Lock,即对记录以及与和上一条记录之间的间隙加共享锁。
通过下面这个例子就能验证:
请点击输入图片描述
这里 session1 插入数据遇到唯一冲突,虽然报错,但是对 (15,20] 加的 S Next-Key Lock 并不会马上释放,所以 session2 被阻塞。另外一种情况就是本文开始的例子,当 session2 插入遇到唯一冲突但是因为被 X Lock 阻塞,并不会立刻报错 “Duplicate key”,但是依然要等待获取 S Next-Key Lock 。
有个困惑很久的疑问:出现唯一冲突需要加 S Next-Key Lock 是事实,但是加锁的意义是什么?还是说是通过 S Next-Key Lock 来实现的唯一约束检查,但是这样意味着在插入没有遇到唯一冲突的时候,这个锁会立刻释放,这不符合二阶段锁原则。这点希望能与大家一起讨论得到好的解释。
如果是在 REPEATABLE-READ,除以上所说的唯一约束冲突外,gap lock 的存在是这样的:
普通索引(非唯一索引)的S/X Lock,都带 gap 属性,会锁住记录以及前1条记录到后1条记录的左闭右开区间,比如有[4,6,8]记录,delete 6,则会锁住[4,8)整个区间。
对于 gap lock,相信 DBA 们的心情是一样一样的,所以我的建议是:
1. 在绝大部分的业务场景下,都可以把 MySQL 的隔离界别设置为 READ-COMMITTED;
2. 在业务方便控制字段值唯一的情况下,尽量减少表中唯一索引的数量。
锁冲突矩阵
前面我们说的 GAP LOCK 其实是锁的属性,另外我们知道 InnoDB 常规锁模式有:S 和 X,即共享锁和排他锁。锁模式和锁属性是可以随意组合的,组合之后的冲突矩阵如下,这对我们分析死锁很有帮助:
请点击输入图片描述
如何查看mysql中表的锁定情况
1 show processlist;
SHOW PROCESSLIST显示哪些线程正在运行。您也可以使用mysqladmin processlist语句得到此信息。如果您有SUPER权限,您可以看到所有线程。否则,您只能看到您自己的线程(也就是,与您正在使用的MySQL账户相关的线程)。如果有线程在update或者insert 某个表,此时进程的status为updating 或者 sending data。
如果您得到“too many connections”错误信息,并且想要了解正在发生的情况,本语句是非常有用的。MySQL保留一个额外的连接,让拥有SUPER权限的账户使用,以确保管理员能够随时连接和检查系统(假设您没有把此权限给予所有的用户)。
Status
含义
Checking table
正在检查数据表(这是自动的)。
Closing tables
正在将表中修改的数据刷新到磁盘中,同时正在关闭已经用完的表。这是一个很快的操作,如果不是这样的话,就应该确认磁盘空间是否已经满了或者磁盘是否正处于重负中。
Connect Out
复制从服务器正在连接主服务器。
Copying to tmp table on disk
由于临时结果集大于tmp_table_size,正在将临时表从内存存储转为磁盘存储以此节省内存。
Creating tmp table
正在创建临时表以存放部分查询结果。
deleting from main table
服务器正在执行多表删除中的第一部分,刚删除第一个表。
deleting from reference tables
服务器正在执行多表删除中的第二部分,正在删除其他表的记录。
Flushing tables
正在执行FLUSH TABLES,等待其他线程关闭数据表。
Killed
发送了一个kill请求给某线程,那么这个线程将会检查kill标志位,同时会放弃下一个kill请求。MySQL会在每次的主循环中检查kill标志位,不过有些情况下该线程可能会过一小段才能死掉。如果该线程程被其他线程锁住了,那么kill请求会在锁释放时马上生效。
Locked
被其他查询锁住了。
Sending data
正在处理SELECT查询的记录,同时正在把结果发送给客户端。
Sorting for group
正在为GROUP BY做排序。
Sorting for order
正在为ORDER BY做排序。
Opening tables
这个过程应该会很快,除非受到其他因素的干扰。例如,在执ALTER TABLE或LOCK TABLE语句行完以前,数据表无法被其他线程打开。正尝试打开一个表。
Removing duplicates
正在执行一个SELECT DISTINCT方式的查询,但是MySQL无法在前一个阶段优化掉那些重复的记录。因此,MySQL需要再次去掉重复的记录,然后再把结果发送给客户端。
Reopen table
获得了对一个表的锁,但是必须在表结构修改之后才能获得这个锁。已经释放锁,关闭数据表,正尝试重新打开数据表。
Repair by sorting
修复指令正在排序以创建索引。
Repair with keycache
修复指令正在利用索引缓存一个一个地创建新索引。它会比Repair by sorting慢些。
Searching rows for update
正在讲符合条件的记录找出来以备更新。它必须在UPDATE要修改相关的记录之前就完成了。
Sleeping
正在等待客户端发送新请求。
System lock
正在等待取得一个外部的系统锁。如果当前没有运行多个mysqld服务器同时请求同一个表,那么可以通过增加--skip-external-locking参数来禁止外部系统锁。
Upgrading lock
INSERT DELAYED正在尝试取得一个锁表以插入新记录。
Updating
正在搜索匹配的记录,并且修改它们。
User Lock
正在等待GET_LOCK()。
Waiting for tables
该线程得到通知,数据表结构已经被修改了,需要重新打开数据表以取得新的结构。然后,为了能的重新打开数据表,必须等到所有其他线程关闭这个表。以下几种情况下会产生这个通知:FLUSH TABLES tbl_name, ALTER TABLE, RENAME TABLE, REPAIR TABLE, ANALYZE TABLE,或OPTIMIZE TABLE。
waiting for handler insert
INSERT DELAYED已经处理完了所有待处理的插入操作,正在等待新的请求。
大部分状态对应很快的操作,只要有一个线程保持同一个状态好几秒钟,那么可能是有问题发生了,需要检查一下。还有其他的状态没在上面中列出来,不过它们大部分只是在查看服务器是否有存在错误是才用得着。
2 show full processlist;
show processlist;只列出前100条,如果想全列出请使用show full processlist;
3 show open tables;
这条命令能够查看当前有那些表是打开的。In_use列表示有多少线程正在使用某张表,Name_locked表示表名是否被锁,这一般发生在Drop或Rename命令操作这张表时。所以这条命令不能帮助解答我们常见的问题:当前某张表是否有死锁,谁拥有表上的这个锁等。
show open tables from database;
4 show status like ‘%lock%’
查看服务器状态。
5 show engine innodb status\G;
MySQL 5.1之前的命令是:show innodbstatus\G;,MySQL 5.5使用上面命令即可查看innodb引擎的运行时信息。
6 show variables like ‘%timeout%’;
查看服务器配置参数。
当前文章:mysql怎么锁定某张表 mysql如何锁定一行
网站路径:http://myzitong.com/article/ddsgjjj.html