python实现最小二乘法线性拟合-创新互联
本文python代码实现的是最小二乘法线性拟合,并且包含自己造的轮子与别人造的轮子的结果比较。
弓长岭网站制作公司哪家好,找成都创新互联!从网页设计、网站建设、微信开发、APP开发、成都响应式网站建设等网站项目制作,到程序开发,运营维护。成都创新互联公司2013年成立到现在10年的时间,我们拥有了丰富的建站经验和运维经验,来保证我们的工作的顺利进行。专注于网站建设就选成都创新互联。问题:对直线附近的带有噪声的数据进行线性拟合,最终求出w,b的估计值。
最小二乘法基本思想是使得样本方差最小。
代码中self_func()函数为自定义拟合函数,skl_func()为调用scikit-learn中线性模块的函数。
import numpy as np import matplotlib.pyplot as plt from sklearn.linear_model import LinearRegression n = 101 x = np.linspace(0,10,n) noise = np.random.randn(n) y = 2.5 * x + 0.8 + 2.0 * noise def self_func(steps=100, alpha=0.01): w = 0.5 b = 0 alpha = 0.01 for i in range(steps): y_hat = w*x + b dy = 2.0*(y_hat - y) dw = dy*x db = dy w = w - alpha*np.sum(dw)/n b = b - alpha*np.sum(db)/n e = np.sum((y_hat-y)**2)/n #print (i,'W=',w,'\tb=',b,'\te=',e) print ('self_func:\tW =',w,'\n\tb =',b) plt.scatter(x,y) plt.plot(np.arange(0,10,1), w*np.arange(0,10,1) + b, color = 'r', marker = 'o', label = 'self_func(steps='+str(steps)+', alpha='+str(alpha)+')') def skl_func(): lr = LinearRegression() lr.fit(x.reshape(-1,1),y) y_hat = lr.predict(np.arange(0,10,0.75).reshape(-1,1)) print('skl_fun:\tW = %f\n\tb = %f'%(lr.coef_,lr.intercept_)) plt.plot(np.arange(0,10,0.75), y_hat, color = 'g', marker = 'x', label = 'skl_func') self_func(10000) skl_func() plt.legend(loc='upper left') plt.show()
当前名称:python实现最小二乘法线性拟合-创新互联
本文路径:http://myzitong.com/article/deeois.html