Python中Pandas数据结构的示例分析-创新互联
这篇文章将为大家详细讲解有关Python中Pandas数据结构的示例分析,小编觉得挺实用的,因此分享给大家做个参考,希望大家阅读完这篇文章后可以有所收获。
专注于为中小企业提供网站设计、网站建设服务,电脑端+手机端+微信端的三站合一,更高效的管理,为中小企业武夷山免费做网站提供优质的服务。我们立足成都,凝聚了一批互联网行业人才,有力地推动了上1000+企业的稳健成长,帮助中小企业通过网站建设实现规模扩充和转变。Series
Series 类似一维数组,由一组数据及一组相关数据标签组成。使用pandas的Series类即可创建。
import pandas as pd s1 = pd.Series(['a', 'b', 'c,', 'd']) print(s1)
#输出: 0 a # 1 b # 2 c # 3 d # dtype: object
上面是传入一个列表实现,上面的0,1,2,3就是数据的默认标签。另外可以通过index属性自定义标签。
s2 = pd.Series(['1', '2', '3,', '4'],index=['a', 'b', 'c,', 'd']) # index设置自定义索引 print(s2)
另外Series还可以通过字典传参。
s3 = pd.Series({'a':1,'b':2}) print(s3.values) # 通过values获取它的值
DataFrame
DataFrame是由一组数据和一组索引组成的数据结构,有行索引和列索引。和excel类似,是一种表格型数据结构。下面的就是一种简单的DataFrame数据格式
技能 0 python 1 Java
DataFrame类中可传入列表实例化一个dataframe的表格数据对象,此时行和列索引默认都是0.常见的是传入嵌套的列表,嵌套的里面的列表也可以是元祖,如果不指定索引行列索引都是从0,1开始自增,并可以通过columns、index自定义的列索引和行索引。详见下面的代码。
import pandas as pd df2 = pd.DataFrame([('a','A'),('b','B'),('c','C'),('d','D')]) # 传一个嵌套列表,嵌套里的数据可以是元祖,也可是列表 print(df2)
输出的格式如下:
0 1 0 a A 1 b B 2 c C 3 d D
df3 = pd.DataFrame([('a','A'),('b','B'),('c','C'),('d','D')],columns=['小写','大写']) print(df3)
小写 大写 0 a A 1 b B 2 c C 3 d D
DataFrame类中也可传入字典来实例化一个dataframe的表格数据对象,此时字典的key就相当于列索引,此时行索引默认还是从0开始,另外也可通过 index来自定义列索引。
关于“Python中Pandas数据结构的示例分析”这篇文章就分享到这里了,希望以上内容可以对大家有一定的帮助,使各位可以学到更多知识,如果觉得文章不错,请把它分享出去让更多的人看到。
新闻标题:Python中Pandas数据结构的示例分析-创新互联
文章路径:http://myzitong.com/article/diphcd.html