python汇总函数名称 python中函数大全
Python 几个重要的内置函数
在学习Python的过程中,有几个比较重要的内置函数:help()函数、dir()函数、input()与raw_input()函数、print()函数、type()函数。
创新互联自2013年起,先为海城等服务建站,海城等地企业,进行企业商务咨询服务。为海城企业网站制作PC+手机+微官网三网同步一站式服务解决您的所有建站问题。
第一、help()函数
Help()函数的参数分为两种:如果传一个字符串做参数的话,它会自动搜索以这个字符串命名的模块、方法等;如果传入的是一个对象,就会显示这个对象的类型的帮助。比如输入help(‘print’),它就会寻找以‘print’为名的模块、类等,找不到就会看到提示信息;而print在Python里是一个保留字,和pass、return同等,而非对象,所以help(print)也会报错。
第二、dir()函数
dir()函数返回任意对象的属性和方法列表,包含模块对象、函数对象、字符串对象、列表对象、字典对象等。尽管查找和导入模块相对容易,但是记住每个模块包含什么却不是这么简单,您并不希望总是必须查看源代码来找出答案。Python提供了一种方法,可以使用内置的dir()函数来检查模块的内容,当你为dir()提供一个模块名的时候,它返回模块定义的属性列表。dir()函数适用于所有对象的类型,包含字符串、整数、列表、元组、字典、函数、定制类、类实例和类方法。
第三、input与raw_input函数
都是用于读取用户输入的,不同的是input()函数期望用户输入的是一个有效的表达式,而raw_input()函数是将用户的输入包装成一个字符串。
第四、Print()函数
Print在Python3版本之间是作为Python语句使用的,在Python3里print是作为函数使用的。
第五、type()函数
Type()函数返回任意对象的数据类型。在types模块中列出了可能的数据类型,这对于处理多种数据类型的函数非常有用,它通过返回类型对象来做到这一点,可以将这个类型对象与types模块中定义类型相比较。
太全了!Python3常用内置函数总结
数学相关
abs(a) : 求取绝对值。abs(-1)
max(list) : 求取list最大值。max([1,2,3])
min(list) : 求取list最小值。min([1,2,3])
sum(list) : 求取list元素的和。 sum([1,2,3]) 6
sorted(list) : 排序,返回排序后的list。
len(list) : list长度,len([1,2,3])
divmod(a,b): 获取商和余数。 divmod(5,2) (2,1)
pow(a,b) : 获取乘方数。pow(2,3) 8
round(a,b) : 获取指定位数的小数。a代表浮点数,b代表要保留的位数。round(3.1415926,2) 3.14
range(a[,b]) : 生成一个a到b的数组,左闭右开。range(1,10) [1,2,3,4,5,6,7,8,9]
类型转换
int(str) : 转换为int型。int('1') 1
float(int/str) : 将int型或字符型转换为浮点型。float('1') 1.0
str(int) : 转换为字符型。str(1) '1'
bool(int) : 转换为布尔类型。 str(0) False str(None) False
bytes(str,code) : 接收一个字符串,与所要编码的格式,返回一个字节流类型。bytes('abc', 'utf-8') b'abc' bytes(u'爬虫', 'utf-8') b'xe7x88xacxe8x99xab'
list(iterable) : 转换为list。 list((1,2,3)) [1,2,3]
iter(iterable): 返回一个可迭代的对象。 iter([1,2,3]) list_iterator object at 0x0000000003813B00
dict(iterable) : 转换为dict。 dict([('a', 1), ('b', 2), ('c', 3)]) {'a':1, 'b':2, 'c':3}
enumerate(iterable) : 返回一个枚举对象。
tuple(iterable) : 转换为tuple。 tuple([1,2,3]) (1,2,3)
set(iterable) : 转换为set。 set([1,4,2,4,3,5]) {1,2,3,4,5} set({1:'a',2:'b',3:'c'}) {1,2,3}
hex(int) : 转换为16进制。hex(1024) '0x400'
oct(int) : 转换为8进制。 oct(1024) '0o2000'
bin(int) : 转换为2进制。 bin(1024) '0b10000000000'
chr(int) : 转换数字为相应ASCI码字符。 chr(65) 'A'
ord(str) : 转换ASCI字符为相应的数字。 ord('A') 65
相关操作
eval****() : 执行一个表达式,或字符串作为运算。 eval('1+1') 2
exec() : 执行python语句。 exec('print("Python")') Python
filter(func, iterable) : 通过判断函数fun,筛选符合条件的元素。 filter(lambda x: x3, [1,2,3,4,5,6]) filter object at 0x0000000003813828
map(func, *iterable) : 将func用于每个iterable对象。 map(lambda a,b: a+b, [1,2,3,4], [5,6,7]) [6,8,10]
zip(*iterable) : 将iterable分组合并。返回一个zip对象。 list(zip([1,2,3],[4,5,6])) [(1, 4), (2, 5), (3, 6)]
type():返回一个对象的类型。
id(): 返回一个对象的唯一标识值。
hash(object):返回一个对象的hash值,具有相同值的object具有相同的hash值。 hash('python') 7070808359261009780
help():调用系统内置的帮助系统。
isinstance():判断一个对象是否为该类的一个实例。
issubclass():判断一个类是否为另一个类的子类。
globals() : 返回当前全局变量的字典。
next(iterator[, default]) : 接收一个迭代器,返回迭代器中的数值,如果设置了default,则当迭代器中的元素遍历后,输出default内容。
reversed(sequence) : 生成一个反转序列的迭代器。 reversed('abc') ['c','b','a']
python 常用的系统函数有哪些
1.常用内置函数:(不用import就可以直接使用)
help(obj) 在线帮助, obj可是任何类型
callable(obj) 查看一个obj是不是可以像函数一样调用
repr(obj) 得到obj的表示字符串,可以利用这个字符串eval重建该对象的一个拷贝
eval_r(str) 表示合法的python表达式,返回这个表达式
dir(obj) 查看obj的name space中可见的name
hasattr(obj,name) 查看一个obj的name space中是否有name
getattr(obj,name) 得到一个obj的name space中的一个name
setattr(obj,name,value) 为一个obj的name space中的一个name指向vale这个object
delattr(obj,name) 从obj的name space中删除一个name
vars(obj) 返回一个object的name space。用dictionary表示
locals() 返回一个局部name space,用dictionary表示
globals() 返回一个全局name space,用dictionary表示
type(obj) 查看一个obj的类型
isinstance(obj,cls) 查看obj是不是cls的instance
issubclass(subcls,supcls) 查看subcls是不是supcls的子类
类型转换函数
chr(i) 把一个ASCII数值,变成字符
ord(i) 把一个字符或者unicode字符,变成ASCII数值
oct(x) 把整数x变成八进制表示的字符串
hex(x) 把整数x变成十六进制表示的字符串
str(obj) 得到obj的字符串描述
list(seq) 把一个sequence转换成一个list
tuple(seq) 把一个sequence转换成一个tuple
dict(),dict(list) 转换成一个dictionary
int(x) 转换成一个integer
long(x) 转换成一个long interger
float(x) 转换成一个浮点数
complex(x) 转换成复数
max(...) 求最大值
min(...) 求最小值
用于执行程序的内置函数
complie 如果一段代码经常要使用,那么先编译,再运行会更快。
2.和操作系统相关的调用
系统相关的信息模块 import sys
sys.argv是一个list,包含所有的命令行参数.
sys.stdout sys.stdin sys.stderr 分别表示标准输入输出,错误输出的文件对象.
sys.stdin.readline() 从标准输入读一行 sys.stdout.write("a") 屏幕输出a
sys.exit(exit_code) 退出程序
sys.modules 是一个dictionary,表示系统中所有可用的module
sys.platform 得到运行的操作系统环境
sys.path 是一个list,指明所有查找module,package的路径.
操作系统相关的调用和操作 import os
os.environ 一个dictionary 包含环境变量的映射关系 os.environ["HOME"] 可以得到环境变量HOME的值
os.chdir(dir) 改变当前目录 os.chdir('d:\\outlook') 注意windows下用到转义
os.getcwd() 得到当前目录
os.getegid() 得到有效组id os.getgid() 得到组id
os.getuid() 得到用户id os.geteuid() 得到有效用户id
os.setegid os.setegid() os.seteuid() os.setuid()
os.getgruops() 得到用户组名称列表
os.getlogin() 得到用户登录名称
os.getenv 得到环境变量
os.putenv 设置环境变量
os.umask 设置umask
os.system(cmd) 利用系统调用,运行cmd命令
操作举例:
os.mkdir('/tmp/xx') os.system("echo 'hello' /tmp/xx/a.txt") os.listdir('/tmp/xx')
os.rename('/tmp/xx/a.txt','/tmp/xx/b.txt') os.remove('/tmp/xx/b.txt') os.rmdir('/tmp/xx')
用python编写一个简单的shell
#!/usr/bin/python
import os, sys
cmd = sys.stdin.readline()
while cmd:
os.system(cmd)
cmd = sys.stdin.readline()
用os.path编写平台无关的程序
os.path.abspath("1.txt") == os.path.join(os.getcwd(), "1.txt")
os.path.split(os.getcwd()) 用于分开一个目录名称中的目录部分和文件名称部分。
os.path.join(os.getcwd(), os.pardir, 'a', 'a.doc') 全成路径名称.
os.pardir 表示当前平台下上一级目录的字符 ..
os.path.getctime("/root/1.txt") 返回1.txt的ctime(创建时间)时间戳
os.path.exists(os.getcwd()) 判断文件是否存在
os.path.expanduser('~/dir') 把~扩展成用户根目录
os.path.expandvars('$PATH') 扩展环境变量PATH
os.path.isfile(os.getcwd()) 判断是否是文件名,1是0否
os.path.isdir('c:\Python26\temp') 判断是否是目录,1是0否
os.path.islink('/home/huaying/111.sql') 是否是符号连接 windows下不可用
os.path.ismout(os.getcwd()) 是否是文件系统安装点 windows下不可用
os.path.samefile(os.getcwd(), '/home/huaying') 看看两个文件名是不是指的是同一个文件
os.path.walk('/home/huaying', test_fun, "a.c")
遍历/home/huaying下所有子目录包括本目录,对于每个目录都会调用函数test_fun.
例:在某个目录中,和他所有的子目录中查找名称是a.c的文件或目录。
def test_fun(filename, dirname, names): //filename即是walk中的a.c dirname是访问的目录名称
if filename in names: //names是一个list,包含dirname目录下的所有内容
print os.path.join(dirname, filename)
os.path.walk('/home/huaying', test_fun, "a.c")
文件操作
打开文件
f = open("filename", "r") r只读 w写 rw读写 rb读二进制 wb写二进制 w+写追加
读写文件
f.write("a") f.write(str) 写一字符串 f.writeline() f.readlines() 与下read类同
f.read() 全读出来 f.read(size) 表示从文件中读取size个字符
f.readline() 读一行,到文件结尾,返回空串. f.readlines() 读取全部,返回一个list. list每个元素表示一行,包含"\n"\
f.tell() 返回当前文件读取位置
f.seek(off, where) 定位文件读写位置. off表示偏移量,正数向文件尾移动,负数表示向开头移动。
where为0表示从开始算起,1表示从当前位置算,2表示从结尾算.
f.flush() 刷新缓存
关闭文件
f.close()
regular expression 正则表达式 import re
简单的regexp
p = re.compile("abc") if p.match("abc") : print "match"
上例中首先生成一个pattern(模式),如果和某个字符串匹配,就返回一个match object
除某些特殊字符metacharacter元字符,大多数字符都和自身匹配。
这些特殊字符是 。^ $ * + ? { [ ] \ | ( )
字符集合(用[]表示)
列出字符,如[abc]表示匹配a或b或c,大多数metacharacter在[]中只表示和本身匹配。例:
a = ".^$*+?{\\|()" 大多数metachar在[]中都和本身匹配,但"^[]\"不同
p = re.compile("["+a+"]")
for i in a:
if p.match(i):
print "[%s] is match" %i
else:
print "[%s] is not match" %i
在[]中包含[]本身,表示"["或者"]"匹配.用
和
表示.
^出现在[]的开头,表示取反.[^abc]表示除了a,b,c之外的所有字符。^没有出现在开头,即于身身匹配。
-可表示范围.[a-zA-Z]匹配任何一个英文字母。[0-9]匹配任何数字。
\在[]中的妙用。
\d [0-9]
\D [^0-9]
\s [ \t\n\r\f\v]
\S [^ \t\n\r\f\v]
\w [a-zA-Z0-9_]
\W [^a-zA-Z0-9_]
\t 表示和tab匹配, 其他的都和字符串的表示法一致
\x20 表示和十六进制ascii 0x20匹配
有了\,可以在[]中表示任何字符。注:单独的一个"."如果没有出现[]中,表示出了换行\n以外的匹配任何字符,类似[^\n].
regexp的重复
{m,n}表示出现m个以上(含m个),n个以下(含n个). 如ab{1,3}c和abc,abbc,abbbc匹配,不会与ac,abbbc匹配。
m是下界,n是上界。m省略表下界是0,n省略,表上界无限大。
*表示{,} +表示{1,} ?表示{0,1}
最大匹配和最小匹配 python都是最大匹配,如果要最小匹配,在*,+,?,{m,n}后面加一个?.
match object的end可以得到匹配的最后一个字符的位置。
re.compile("a*").match('aaaa').end() 4 最大匹配
re.compile("a*?").match('aaaa').end() 0 最小匹配
使用原始字符串
字符串表示方法中用\\表示字符\.大量使用影响可读性。
解决方法:在字符串前面加一个r表示raw格式。
a = r"\a" print a 结果是\a
a = r"\"a" print a 结果是\"a
使用re模块
先用re.compile得到一个RegexObject 表示一个regexp
后用pattern的match,search的方法,得到MatchObject
再用match object得到匹配的位置,匹配的字符串等信息
RegxObject常用函数:
re.compile("a").match("abab") 如果abab的开头和re.compile("a")匹配,得到MatchObject
_sre.SRE_Match object at 0x81d43c8
print re.compile("a").match("bbab")
None 注:从str的开头开始匹配
re.compile("a").search("abab") 在abab中搜索第一个和re_obj匹配的部分
_sre.SRE_Match object at 0x81d43c8
print re.compile("a").search("bbab")
_sre.SRE_Match object at 0x8184e18 和match()不同,不必从开头匹配
re_obj.findall(str) 返回str中搜索所有和re_obj匹配的部分.
返回一个tuple,其中元素是匹配的字符串.
MatchObject的常用函数
m.start() 返回起始位置,m.end()返回结束位置(不包含该位置的字符).
m.span() 返回一个tuple表示(m.start(), m.end())
m.pos(), m.endpos(), m.re(), m.string()
m.re().search(m.string(), m.pos(), m.endpos()) 会得到m本身
m.finditer()可以返回一个iterator,用来遍历所有找到的MatchObject.
for m in re.compile("[ab]").finditer("tatbxaxb"):
print m.span()
高级regexp
| 表示联合多个regexp. A B两个regexp,A|B表示和A匹配或者跟B匹配.
^ 表示只匹配一行的开始行首,^只有在开头才有此特殊意义。
$ 表示只匹配一行的结尾
\A 表示只匹配第一行字符串的开头 ^匹配每一行的行首
\Z 表示只匹配行一行字符串的结尾 $匹配第一行的行尾
\b 只匹配词的边界 例:\binfo\b 只会匹配"info" 不会匹配information
\B 表示匹配非单词边界
示例如下:
print re.compile(r"\binfo\b").match("info ") #使用raw格式 \b表示单词边界
_sre.SRE_Match object at 0x817aa98
print re.compile("\binfo\b").match("info ") #没有使用raw \b表示退格符号
None
print re.compile("\binfo\b").match("\binfo\b ")
_sre.SRE_Match object at 0x8174948
分组(Group) 示例:re.compile("(a(b)c)d").match("abcd").groups() ('abc', 'b')
#!/usr/local/bin/python
import re
x = """
name: Charles
Address: BUPT
name: Ann
Address: BUPT
"""
#p = re.compile(r"^name:(.*)\n^Address:(.*)\n", re.M)
p = re.compile(r"^name:(?P.*)\n^Address:(?P.*)\n", re.M)
for m in p.finditer(x):
print m.span()
print "here is your friends list"
print "%s, %s"%m.groups()
Compile Flag
用re.compile得到RegxObject时,可以有一些flag用来调整RegxObject的详细特征.
DOTALL, S 让.匹配任意字符,包括换行符\n
IGNORECASE, I 忽略大小写
LOCALES, L 让\w \W \b \B和当前的locale一致
MULTILINE, M 多行模式,只影响^和$(参见上例)
VERBOSE, X verbose模式
python自定义函数有哪些?
Python的自定义函数格式中规中矩,用def引导自定义函数名,用括号给出该函数的参数,在冒号后换行通过缩进确定函数体。在格式上和条件判断语句有些相似。
如果函数名和变量名冲突了,相当于重新赋值。而python解释是从上到下的,也就是说此时谁在下面谁占用这个变量名。剩下的那个就只能在内存中等待垃圾回收了。
自定义函数的参数:
按道理来说,即使Python不严格要求定义函数参数,但这方面的知识有助于理解自定义函数中参数操作的情况,还是应该说明一下的。
可以简单地理解为在定义函数时括号中声明的参数是我们在函数使用中会用到的参数,在调用函数时括号中的变量就是参加函数运算用到的变量,换个名字参数(用于定义)和变量(用于调用)就足以理解了。
Python字典中几个常用函数总结
1、get() 返回指定键的值,如果值不在字典中返回default值。
语法:dict.get(key,default=None)
参数:
key 字典中要查找的键。
default 如果指定键的值不存在时,返回该默认值值。
例:
dict={'Name':'alex','Age':21}
print("Name is:%s"% dict.get('Name')+"\n"+ "Age is:%d"% dict.get('Age'))
显示结果为:
Name is:alex
Age is:21
2、update() 将一个字典中的值更新到另一个字典中。
语法:dict.update(dict2)
参数:
dict2 添加到指定字典dict里的字典。
例:
dict={'Name':'alex','Age':21}
dict2={'Sex':'female'}
dict.update(dict2)
print("Value is %s" % dict)
显示结果为:
Value is {'Name': 'alex', 'Age': 21, 'Sex': 'female'}
pandas常用函数汇总
pandas官方文档:
对常用函数做了汇总,每个函数的参数可能不是全的,但是常用的,不常用的没总结,如有问题,请不吝赐教,谢谢!
1、创建Series
通用函数:pd.Series(values,index)
1)pd.Series([1,2,3],index=[‘a’,‘b’,‘c‘])
2)pd.Series(np.array([1,2,3]),index=[‘a’,‘b’,‘c‘])
3)pd.Series({ 'a':1, 'b':2, 'c':3})
Series转字典:Series.to_dict()
说明:Series的values参数是python中常见的一维数据类型。
2、属性
1)Series.values ---array([1,2,3])
Series的values是array类型
2)Series.index---index([‘a’,‘b’,‘c‘])
未指定index时,自动生成 0-(N-1)的整数索引,
指定 index时,使用指定索引。
3、Series的索引与切片
Series[0] / Series['a'] : Sereis可以位置索引或标签索引,也可以进行切片操作
1、创建DataFrame
1) 创建DataFrame的通用函数:
df = pd.DataFrame(values,index,columns)
pd.dataFrame([[1,2,3],[4,5,6],[7,8,9]],index=['a','b','c'],columns=['bj','sh','sz'])
pd.dataFrame(np.arange(1,10).reshape(3,3),index=['a','b','c'],columns=['bj','sh','sz'])
pd.dataFrame('bj':[1,4,7],'sh':[2,5,8],'sz':[3,6,9],index=['a','b','c'])
说明:创建方法与Sries类似,Series的values参数是python中常见的一维数据类型,DataFrame的values参数是python中常见的二维数据类型。
2) 通过网页中复制数据快捷创建
import webbrowser
link = ''
webbrowser.open(link)
打开界面进行复制,将数据复制到粘贴板中
df = pd.read_clipboard() #从粘贴板中读取数据
3)通过Series创建DataFrame
df = pd.DataFrame([s1,s2,s3],columns=['bj','sh','sz'])
注意:单独的s1,s2,s3是纵向排列的的Series,但是在DataFrame中是横向排列的。
自己总结:Series除了打印出来是Series格式外,其他时候可以直接当作list来操作。
2、属性
1)df.columns
通过columns生成新的DataFrame
df_new = pd.DataFrame(df,columns=['x1','x2'])
或者df_new = df[['x1','x2']]
2)df.shape 显示行列数
3)df.head() 默认显示前5行
4)df.tail() 默认显示后5行
3、获取DataFrame的列
1)获取DataFrame某一列
df.x1或df['x1']:返回值是Series,可以理解为一个DataFrame是由多个Series组成的。
2) 获取DataFrame某几列
df_new = df[['x1','x2','x3']]
4、为某列赋值
1) df['x1'] = range(10)
2) df['x1'] = numpy.arange(10)
3) df['x1'] = pd.Series(np.arange(10))
说明:类似于创建Series
5、为某列对应的特定行重新赋值
df['x1'] = pd.Series([2,3],index=[0,1])
将列为x1,行索引为0和1的值改为2,3
6、获取DadaFrame的行
for row in DataFrame.iterrows():
print(row[0],row[1])
#每个row是一个元祖,包含2个元素,row[0]是整型索引,row[1]是Series,所以从行的角度也可以看出,一个DataFrame是由多个Series组成的。
7、DataFrame的转置
df_new = df.T
1、粘贴板的io
df = pd.read_clipboard()
df.to_clipboard()
2、csv的io
df.to_csv('xxx.csv')
df = pd.read_csv('xxx.csv')
3、json的io
df.to_json()
pd.read_json(df.to_json())
4、excel的io
df.to_excel('xx.xlsx')
df = pd.read_excel('xx.xlsx')
5、df = pd.read_sql('')
df.to_sql('')
1、iloc
sub_df = df.iloc[10:20,:] 选取DataFrame的10-20行,所有列数据
sub_df = df.iloc[10:20,0:2]
说明:iloc函数是位置索引,与索引的名字无关。
2、loc
sub_df = df.loc[10:20,:'movie_name']
说明:loc是标签索引,10,20,'movie_name' 都是索引名字,与位置无关。
1、Series.reindex(index=['x1','x2','x3'],fill_value=10)
将df重新索引,并且将NaN空值用10进行填充
2、Series.reindex(index=range(15),method='ffill')
前项填充,后面的值用前面的值进行填充
通过reindex想到,如果想新增一个空列或者空行,可以用reindex方法,同样地,想减少某些行或者某些列,也可以用reindex方法。
继reindex之后删除行列的函数操作
Series.drop('A') #删除'A'所对应的值
DataFrame.drop(label,axis)
label可以是行名也可以是列名,label是行的话axis是0,label是列的话axis是1。
** 删除行还可以用 del df['A']
nan是numpy的一种数据类型,np.nan,float类型
任何数据与nan的运算结果都是nan
1、nan in Series
Series.isnull() --返回value为True或者False的Series
Series.notnull() --返回value为True或者False的Series
Series.dropna() --返回删除nan值后的Series
Series.fillna(method='ffill') --前项插值,按照前面的值填充后面的空值
2、nan in DataFrame
df.isnull() --返回value为True或者False的DataFrame
df.notnull() --返回value为True或者False的DataFrame
df.dropna(axis=0/1,how='any/all',thresh=None)
说明:axis表示删除行为nan或者列为nan;
any表示只要有一个为空,all表示行中的每个元素或者列中的每个元素为空;
thresh是阈值的意思,表示某行或者某列nan的个数达到阈值的个数时才删除该行或该列。
df.fillna(value=1) ---所有的空值都填充为1
df.fillna(value={0:0,1:1,2:2}) ---将0列的空值填为0,1列的空值填为1,2列的空值填为2,默认为填充列
注意:fillna和dropna的特点,生成新的DataFrame,原来的DataFrame不变。
1、多重索引介绍
Series = pd.Series(np.random.randn(6),index=[['1','1','1','2','2','2'],['a','b','c','a','b','c']])
'1','2'为一级索引,'a','b','c'为二级索引
df 可以看做是索引的'1','2'的Series
Series['1'] --Series
Series['1']['a'] --value
Series[:,'a'] --选择'1'和'2'中的'a'对应的值
2、多重索引格式转为二维DataFrame
df = Series.unstack() --转为二维DataFrame
3、多重索引在DataFrame中的操作
1、 map函数与apply函数、applymap函数的区别:
1)map函数对Series中的每个元素作用;
2)applymap函数对DataFrame中的每个元素作用;
3)apply函数对对DataFrame和Series的一列做整体运算。
2、Series.replace(to_replace=[2,3,4],values=[20,30,40]) 替换Series中多个值
Series.replace({1:10,2:20}) 将索引为1的值替换为10,将索引为2的值替换为20
df.sum() --默认按照列进行求和,nan的值被忽略
df.min() --默认按照列求最小值
df.max() --默认按照列求最大值
df.mean() --默认按照列求平均值
df.describe() --默认按照列进行描述
df.sum(axis=1) --按行求和,nan的值被忽略
#axis=0表示对横轴进行操作,但是运算中表现为纵轴操作
#axis=1表示对纵轴进行操作,但是运算中表现为横轴操作
bins = [0,59,70,80,100],bins是分割范围
score_cat = pd.cut(Series,bins) ---得到catgory类型的数据
DataFrame的分箱技术很棒啊!
pd['catgory'] = pd.cut(df['a'],bins=[0,59,70,80,100],labels=['low','ok','good','great'])
--新增一列,将a列的值按照labels进行分类标记,good!!!
#生成长度为3的随机字符串 pd.util.testing.rands(3)
1、按照一列分组
g = df.groupby('city')
g是分组类型数据,打印不出来,所以看不到,但是有属性和方法可以间接的了解
1) g.groups --得到分的几个组,和每个组包含的索引
2)g.get_group('BJ') --得到'BJ'所对应的组
3)groupby = split +apply +combine
g.mean() --求每组的平均值
g.max() --求每组的最大值
g.min() --求每组的最小值
g.count()
g.describe()
4)g是一个可迭代对象,可以用list函数将其转化为list
list(g) -- [('组名1',DataFrame1),('组名2',DataFrame2),(),()]
dict(list(g)) --将其转化为字典
同时可以通过for循环进行遍历操作:for item,desc in g:print(item,desc)
#怪不得分组后不是DataFrame,因为元组的第一个元素是'分组名'。
2、按照多列分组
g_new = df.groupby(['city','wind'])
得到生成器((('分组1','分组2'),DataFrame),(),()...)
g_new.get_group(('分组1','分组2'))
for (name_1,name_2),group in g_new:
print((name_1,name_2),group)
g.mean() --求每组的平均值
与g.agg('mean')方法一样
pd.pivot_table(df,index=['',''],aggfuc='sum',values=['',''])
index是分组的组名,values是透视表呈现结果的列,columns是values下的分解
#感觉透视表呈现的结果就是groupby+agg后的结果
#分析者需要对数据结构有一定的了解
df.sort_values(by='',ascending=True/False)[:10] df可以索引
df.value_counts() --按值计数
df.['a'] = df['b'].apply(lambda x:x0) --DataFrame中的True/False
通过g.size()可以看到被groupby之后的数据,得到的是一个Series
1、Series的排序:
1)对值进行排序
Series.sort_values() ---直接对Series的值进行排序
2)通过索引进行排序
Series.sort_index()
#默认都是升序排列
2、DataFrame的排序
df.sort_values(by='') --按照某列的顺序进行排序
df['a'].sort_values() --返回对a列数据的排序结果,只返回a列
1、df.index = Series(['a','b','c']) 直接对index赋予新值
2、df.index = df.index.map(str.upper)
map函数中只传入新的函数名即可
3、df.rename(index=str.upper,columns=str.lower)
或者传递字典,进行一一转换
pd.merge(df1,df2,on=None,how='left/right/inner/outer')
pd.merge(df1,df2) --没有on参数默认先找相同的columns,然后在columns下找相同的values
pd.merge(df1,df2,on='columns') --on参数是指按照指定列进行merge
left:表示以左边的数据表为基准,进行填充右面的数据
right:表示以右边的数据表为基准,填充左边的数据
outer:以on的指定列的所有值为基准,填充两边的数据
inner:默认inner,相同on指定的columns下的相同values对应的左右两边的数据
1、concat拼接
pd.concat([Series1,Series2])
pd.concat([df1,df2]) -- 上下叠加,将没有的列进行填充
2、combine组合
Series1.combine_first(Series2) --用Series2的值去填充Series1中为空的值
df1.combine_first(df2) ---用df2将df1中的空值填充
df['A'] = df['A'].apply(str.upper) ---apply函数中也只输入函数名
len(df) --求df的长度
len(df['a'].unique()) --查看a列中不重复数据的多少
Series.duplicated() --返回一列True/False的Series
Series.drop_duplicates() --删除重复值
df.drop_duplicates('a',keep='first/last')
df.drop_duplicates() --删除完全重复的行
参数:'a'表示以a列为基准,删除重复值
first表示保留第一个,last表示保留最后一个
data_list = pd.date_range(start,end,period='D',freq)
period='D',以天为单位
freq = 'W' 以周为单位
freq = 'W-Mon'以每周一位单位
freq = '5H' 以5h为单位
以data_range作为索引提取数据比较简单
df[datetime(2017,9,1)]
df['2017-09-01']
df['20170901']
df['201709']
对时间序列数据进行分组聚合操作:
s1.resample('M').mean() --以月为单位进行采样,然后求每组的平均值
s1.resample('H').ffill() --前项填充
s1.resample('H').bfill() --后项填充
补充:1)jupyter中可以执行linux命令,太棒了!
!ls
!more xxx.csv
!pwd 等等
2)jupyter 查看函数帮助的快捷键:摁住shift + tab 棒!!!
标题名称:python汇总函数名称 python中函数大全
本文地址:http://myzitong.com/article/docdppo.html