随机森林python函数 python随机森林库

如何用python实现随机森林分类

大家如何使用scikit-learn包中的类方法来进行随机森林算法的预测。其中讲的比较好的是各个参数的具体用途。

创新互联公司专注为客户提供全方位的互联网综合服务,包含不限于成都网站设计、成都网站建设、获嘉网络推广、小程序制作、获嘉网络营销、获嘉企业策划、获嘉品牌公关、搜索引擎seo、人物专访、企业宣传片、企业代运营等,从售前售中售后,我们都将竭诚为您服务,您的肯定,是我们最大的嘉奖;创新互联公司为所有大学生创业者提供获嘉建站搭建服务,24小时服务热线:18980820575,官方网址:www.cdcxhl.com

这里我给出我的理解和部分翻译:

参数说明:

最主要的两个参数是n_estimators和max_features。

n_estimators:表示森林里树的个数。理论上是越大越好。但是伴随着就是计算时间的增长。但是并不是取得越大就会越好,预测效果最好的将会出现在合理的树个数。

max_features:随机选择特征集合的子集合,并用来分割节点。子集合的个数越少,方差就会减少的越快,但同时偏差就会增加的越快。根据较好的实践经验。如果是回归问题则:

max_features=n_features,如果是分类问题则max_features=sqrt(n_features)。

如果想获取较好的结果,必须将max_depth=None,同时min_sample_split=1。

同时还要记得进行cross_validated(交叉验证),除此之外记得在random forest中,bootstrap=True。但在extra-trees中,bootstrap=False。

这里也给出一篇老外写的文章:调整你的随机森林模型参数 

这里我使用了scikit-learn自带的iris数据来进行随机森林的预测:

[python] view plain copy

from sklearn.tree import DecisionTreeRegressor

from sklearn.ensemble import RandomForestRegressor

import numpy as np

from sklearn.datasets import load_iris

iris=load_iris()

#print iris#iris的4个属性是:萼片宽度 萼片长度 花瓣宽度 花瓣长度 标签是花的种类:setosa versicolour virginica

print iris['target'].shape

rf=RandomForestRegressor()#这里使用了默认的参数设置

rf.fit(iris.data[:150],iris.target[:150])#进行模型的训练

#

#随机挑选两个预测不相同的样本

instance=iris.data[[100,109]]

print instance

print 'instance 0 prediction;',rf.predict(instance[0])

print 'instance 1 prediction;',rf.predict(instance[1])

print iris.target[100],iris.target[109]

返回的结果如下:

(150,)

[[ 6.3  3.3  6.   2.5]

[ 7.2  3.6  6.1  2.5]]

instance 0 prediction; [ 2.]

instance 1 prediction; [ 2.]

2 2

在这里我有点困惑,就是在scikit-learn算法包中随机森林实际上就是一颗颗决策树组成的。但是之前我写的决策树博客中是可以将决策树给显示出来。但是随机森林却做了黑盒处理。我们不知道内部的决策树结构,甚至连父节点的选择特征都不知道是谁。所以我给出下面的代码(这代码不是我的原创),可以显示的显示出所有的特征的贡献。所以对于贡献不大的,甚至是负贡献的我们可以考虑删除这一列的特征值,避免做无用的分类。

[python] view plain copy

from sklearn.cross_validation import cross_val_score, ShuffleSplit

X = iris["data"]

Y = iris["target"]

names = iris["feature_names"]

rf = RandomForestRegressor()

scores = []

for i in range(X.shape[1]):

score = cross_val_score(rf, X[:, i:i+1], Y, scoring="r2",

cv=ShuffleSplit(len(X), 3, .3))

scores.append((round(np.mean(score), 3), names[i]))

print sorted(scores, reverse=True)

显示的结果如下:

[(0.934, 'petal width (cm)'), (0.929, 'petal length (cm)'), (0.597, 'sepal length (cm)'), (0.276, 'sepal width (cm)')]

这里我们会发现petal width、petal length这两个特征将起到绝对的贡献,之后是sepal length,影响最小的是sepal width。这段代码将会提示我们各个特征的贡献,可以让我们知道部分内部的结构。

求python写的随机森林的roc代码

随机森林在R packages和Python scikit-learn中的实现是当下非常流行的,下列是在R和Python中载入随机森林模型的具体代码:

Python

#Import Library

fromsklearn.ensemble import RandomForestClassifier #use RandomForestRegressor for regression problem

#Assumed you have, X (predictor) and Y (target) for training data set and x_test(predictor) of test_dataset

# Create Random Forest object

model= RandomForestClassifier(n_estimators=1000)

# Train the model using the training sets and check score

model.fit(X, y)

#Predict Output

predicted= model.predict(x_test)

R Code

library(randomForest)

x- cbind(x_train,y_train)

# Fitting model

fit- randomForest(Species ~ ., x,ntree=500)

summary(fit)

#Predict Output

predicted= predict(fit,x_test)

python 机器学习随机森林怎么存起来用

你说的问题叫模型持久化,就是把学习好的模型保存起来,以后只要调用这个文件就可以了。

每个框架都应该有模型持久化函数,以sklearn为例:

from sklearn.externals import joblib

joblib.dump(clf, "train_model.m") #存储

clf = joblib.load("train_model.m") #调用


当前名称:随机森林python函数 python随机森林库
本文地址:http://myzitong.com/article/dodcdhg.html