python中的阻塞函数 python阻塞和非阻塞
如何解决python socket server重启后端口被占用的问题
本文介绍下,在solaris 系统下,python socket server重启后,提示端口被占用,telnet端口失败。这里给出一个解决方法,有需要的朋友参考下。
成都创新互联公司拥有10多年成都网站建设工作经验,为各大企业提供做网站、成都网站设计服务,对于网页设计、PC网站建设(电脑版网站建设)、重庆APP开发公司、wap网站建设(手机版网站建设)、程序开发、网站优化(SEO优化)、微网站、国际域名空间等,凭借多年来在互联网的打拼,我们在互联网网站建设行业积累了很多网站制作、网站设计、网络营销经验,集策划、开发、设计、营销、管理等网站化运作于一体,具备承接各种规模类型的网站建设项目的能力。
在solaris 系统下,socket server被重启后,提示端口被占用,telnet端口又是不成功的,说明服务已被关闭。
通过netstat可以看到端口还处于于fin_wait_2状态,solaris要4分钟才能关闭。
遇到这个问题时,可以采用如下的方法解决,以减少等待时间。
1,加上s.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)。
代码:
复制代码代码示例:
self.host=socket.gethostbyname(socket.gethostname())
s = socket.socket(socket.AF_INET,socket.SOCK_STREAM)
s.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
s.bind((self.host,self.port))
s.listen(5)
2,修改系统fin_wait,time_wait的时间设置。这个时间改短,也利于系统系能。
修改方法
查看或设置:
使用get命令来确定当前时间间隔,并使用set命令将时间间隔指定为30秒。
例如:
复制代码代码示例:
ndd -get /dev/tcp tcp_time_wait_interval
ndd -set /dev/tcp tcp_time_wait_interval 30000
缺省值:对于 Solaris 操作系统,缺省等待时间间隔为 240000 毫秒(即 4 分钟)。
建议值:60000 毫秒。
Solaris TCP_FIN_WAIT_2_FLUSH_INTERVAL
描述:
指定禁止处于FIN_WAIT_2状态的连接保持该状态的计时器时间间隔。
当连接比率较高时,这将累积大量的TCP/IP连接,从而导致服务器性能下降。在高峰时间段,服务器会发 生延迟。
如果服务器延迟,netstat命令显示对HTTP Server打开的许多套接字处于CLOSE_WAIT或FIN_WAIT_2状态。
明显的延迟可能会长达4分钟,其间服务器无法发送任何响应,但是CPU利用率保持很高,所有活动都在系统进程中。
查看和设置:
使用get命令来确定当前时间间隔,并使用set命令将时间间隔指定为67.5秒。
例如:
复制代码代码示例:
ndd -get /dev/tcp tcp_fin_wait_2_flush_interval
ndd -set /dev/tcp tcp_fin_wait_2_flush_interval 67500
缺省值:675000 毫秒
建议值:67500 毫秒
Solaris TCP_KEEPALIVE_INTERVAL
描述:
“保持活动”包确保连接保持活动和已建立状态。
查看或设置:
使用ndd命令来确定当前值或设置该值。
例如:
复制代码代码示例:
ndd -set /dev/tcp tcp_keepalive_interval 300000
缺省值:7200000 毫秒
建议值:15000 毫秒
Python中socket里的.recv()函数问题
可以通过setsockopt,或者更简单的setblocking,
settimeout设置。阻塞式的socket的recv服从这样的规则:
当缓冲区内有数据时,立即返回所有的数据;当缓冲区内无数据时,阻塞直到缓冲区中有数据。非阻塞式的socket的recv服从的规则则是:
当缓冲区内有数据时,立即返回所有的数据;当缓冲区内无数据时,产生EAGAIN的错误并返回(在Python中会抛出一个异常)。两种情况都不会返回空字符串,返回空数据的结果是对方关闭了连接之后才会出现的。
python2.7怎么实现异步
改进之前
之前,我的查询步骤很简单,就是:
前端提交查询请求 -- 建立数据库连接 -- 新建游标 -- 执行命令 -- 接受结果 -- 关闭游标、连接
这几大步骤的顺序执行。
这里面当然问题很大:
建立数据库连接实际上就是新建一个套接字。这是进程间通信的几种方法里,开销最大的了。
在“执行命令”和“接受结果”两个步骤中,线程在阻塞在数据库内部的运行过程中,数据库连接和游标都处于闲置状态。
这样一来,每一次查询都要顺序的新建数据库连接,都要阻塞在数据库返回结果的过程中。当前端提交大量查询请求时,查询效率肯定是很低的。
第一次改进
之前的模块里,问题最大的就是第一步——建立数据库连接套接字了。如果能够一次性建立连接,之后查询能够反复服用这个连接就好了。
所以,首先应该把数据库查询模块作为一个单独的守护进程去执行,而前端app作为主进程响应用户的点击操作。那么两条进程怎么传递消息呢?翻了几天Python文档,终于构思出来:用队列queue作为生产者(web前端)向消费者(数据库后端)传递任务的渠道。生产者,会与SQL命令一起,同时传递一个管道pipe的连接对象,作为任务完成后,回传结果的渠道。确保,任务的接收方与发送方保持一致。
作为第二个问题的解决方法,可以使用线程池来并发获取任务队列中的task,然后执行命令并回传结果。
第二次改进
第一次改进的效果还是很明显的,不用任何测试手段。直接点击页面链接,可以很直观地感觉到反应速度有很明显的加快。
但是对于第二个问题,使用线程池还是有些欠妥当。因为,CPython解释器存在GIL问题,所有线程实际上都在一个解释器进程里调度。线程稍微开多一点,解释器进程就会频繁的切换线程,而线程切换的开销也不小。线程多一点,甚至会出现“抖动”问题(也就是刚刚唤醒一个线程,就进入挂起状态,刚刚换到栈帧或内存的上下文,又被换回内存或者磁盘),效率大大降低。也就是说,线程池的并发量很有限。
试过了多进程、多线程,只能在单个线程里做文章了。
Python中的asyncio库
Python里有大量的协程库可以实现单线程内的并发操作,比如Twisted、Gevent等等。Python官方在3.5版本里提供了asyncio库同样可以实现协程并发。asyncio库大大降低了Python中协程的实现难度,就像定义普通函数那样就可以了,只是要在def前面多加一个async关键词。async def函数中,需要阻塞在其他async def函数的位置前面可以加上await关键词。
import asyncio
async def wait():
await asyncio.sleep(2)
async def execute(task):
process_task(task)
await wait()
continue_job()
async def函数的执行稍微麻烦点。需要首先获取一个loop对象,然后由这个对象代为执行async def函数。
loop = asyncio.get_event_loop()
loop.run_until_complete(execute(task))
loop.close()
loop在执行execute(task)函数时,如果遇到await关键字,就会暂时挂起当前协程,转而去执行其他阻塞在await关键词的协程,从而实现协程并发。
不过需要注意的是,run_until_complete()函数本身是一个阻塞函数。也就是说,当前线程会等候一个run_until_complete()函数执行完毕之后,才会继续执行下一部函数。所以下面这段代码并不能并发执行。
for task in task_list:
loop.run_until_complete(task)
对与这个问题,asyncio库也有相应的解决方案:gather函数。
loop = asyncio.get_event_loop()
tasks = [asyncio.ensure_future(execute(task))
for task in task_list]
loop.run_until_complete(asyncio.gather(*tasks))
loop.close()
当然了,async def函数的执行并不只有这两种解决方案,还有call_soon与run_forever的配合执行等等,更多内容还请参考官方文档。
Python下的I/O多路复用
协程,实际上,也存在上下文切换,只不过开销很轻微。而I/O多路复用则完全不存在这个问题。
目前,Linux上比较火的I/O多路复用API要算epoll了。Tornado,就是通过调用C语言封装的epoll库,成功解决了C10K问题(当然还有Pypy的功劳)。
在Linux里查文档,可以看到epoll只有三类函数,调用起来比较方便易懂。
创建epoll对象,并返回其对应的文件描述符(file descriptor)。
int epoll_create(int size);
int epoll_create1(int flags);
控制监听事件。第一个参数epfd就对应于前面命令创建的epoll对象的文件描述符;第二个参数表示该命令要执行的动作:监听事件的新增、修改或者删除;第三个参数,是要监听的文件对应的描述符;第四个,代表要监听的事件。
int epoll_ctl(int epfd, int op, int fd, struct epoll_event *event);
等候。这是一个阻塞函数,调用者会等候内核通知所注册的事件被触发。
int epoll_wait(int epfd, struct epoll_event *events,
int maxevents, int timeout);
int epoll_pwait(int epfd, struct epoll_event *events,
int maxevents, int timeout,
const sigset_t *sigmask);
在Python的select库里:
select.epoll()对应于第一类创建函数;
epoll.register(),epoll.unregister(),epoll.modify()均是对控制函数epoll_ctl的封装;
epoll.poll()则是对等候函数epoll_wait的封装。
Python里epoll相关API的最大问题应该是在epoll.poll()。相比于其所封装的epoll_wait,用户无法手动指定要等候的事件,也就是后者的第二个参数struct epoll_event *events。没法实现精确控制。因此只能使用替代方案:select.select()函数。
根据Python官方文档,select.select(rlist, wlist, xlist[, timeout])是对Unix系统中select函数的直接调用,与C语言API的传参很接近。前三个参数都是列表,其中的元素都是要注册到内核的文件描述符。如果想用自定义类,就要确保实现了fileno()方法。
其分别对应于:
rlist: 等候直到可读
wlist: 等候直到可写
xlist: 等候直到异常。这个异常的定义,要查看系统文档。
select.select(),类似于epoll.poll(),先注册文件和事件,然后保持等候内核通知,是阻塞函数。
实际应用
Psycopg2库支持对异步和协程,但和一般情况下的用法略有区别。普通数据库连接支持不同线程中的不同游标并发查询;而异步连接则不支持不同游标的同时查询。所以异步连接的不同游标之间必须使用I/O复用方法来协调调度。
所以,我的大致实现思路是这样的:首先并发执行大量协程,从任务队列中提取任务,再向连接池请求连接,创建游标,然后执行命令,并返回结果。在获取游标和接受查询结果之前,均要阻塞等候内核通知连接可用。
其中,连接池返回连接时,会根据引用连接的协程数量,返回负载最轻的连接。这也是自己定义AsyncConnectionPool类的目的。
我的代码位于:bottle-blog/dbservice.py
存在问题
当然了,这个流程目前还一些问题。
首先就是每次轮询拿到任务之后,都会走这么一个流程。
获取连接 -- 新建游标 -- 执行任务 -- 关闭游标 -- 取消连接引用
本来,最好的情况应该是:在轮询之前,就建好游标;在轮询时,直接等候内核通知,执行相应任务。这样可以减少轮询时的任务量。但是如果协程提前对应好连接,那就不能保证在获取任务时,保持各连接负载均衡了。
所以这一块,还有工作要做。
还有就是epoll没能用上,有些遗憾。
以后打算写点C语言的内容,或者用Python/C API,或者用Ctypes包装共享库,来实现epoll的调用。
最后,请允许我吐槽一下Python的epoll相关文档:简直太弱了!!!必须看源码才能弄清楚功能。
python - 日志记录模块(logging)的二次封装
上篇文章 对logging做了基本介绍,我们可以使用logging来做日志的简单记录。但实际项目应用时,我们一般会根据自身需要对其做二次封装(loggingV2),然后在其他python文件中, 先import申明后直接调用。
废话不多说,下面给几个二次封装的简单示例:
示例一:
loggingV2.py - 封装
logMain.py - 应用
示例二:
对上述示例进行 模块化封装 ,如下log.py
则任何声明了log模块的python文件都可以调用logging日志系统,如下logMain.py
示例三:
对上述示例进行 定制化封装 ,如下myLog.py
需求:
1)同时实现终端显示与日志文件保存
2)日志文件名除日期外,增加显示时间,精确到秒
3)日志输出级别可配置
4)日志保存路径与文件名可配置
5)日志跨天(或者小时/分钟),另生成新文件保存
改写logMain.py,如下:
示例四:
对上述示例进行 异步线程封装 ,如下myThreadLog.py
需求:
1)独立线程处理日志,不影响主程序性能
2)使用队列异步处理日志记录
继续改写logMain.py,如下:
注意 - 线程相关操作函数(如下):
1.threading.Thread() — 创建线程并初始化线程,可以为线程传递参数
2.threading.enumerate() — 返回一个包含正在运行的线程的list
3.threading.activeCount(): 返回正在运行的线程数量,与len(threading.enumerate())有相同的结果
4.Thread.start() — 启动线程
5.Thread.join() — 阻塞函数,一直等到线程结束
6.Thread.isAlive() — 返回线程活动状态
7.Thread.setName() — 设置线程名
8.Thread.getName() — 获取线程名
9.Thread.setDaemon() — 设置为后台线程,这里默认是False,设置为True之后则主线程不会再等待子线程结束才结束,而是主线程结束意味程序退出,子线程也立即结束,注意调用时必须设置在start()之前;
10.除了以上常用函数,线程还经常与互斥锁Lock/事件Event/信号量Condition/队列Queue等函数配合使用
标题名称:python中的阻塞函数 python阻塞和非阻塞
分享URL:http://myzitong.com/article/doidgjd.html