关于python统计函数耗时的信息
python 打印出函数执行所用时间
使用timeit模块,先介绍下:
成都创新互联公司是一家集网站建设,蚌山企业网站建设,蚌山品牌网站建设,网站定制,蚌山网站建设报价,网络营销,网络优化,蚌山网站推广为一体的创新建站企业,帮助传统企业提升企业形象加强企业竞争力。可充分满足这一群体相比中小企业更为丰富、高端、多元的互联网需求。同时我们时刻保持专业、时尚、前沿,时刻以成就客户成长自我,坚持不断学习、思考、沉淀、净化自己,让我们为更多的企业打造出实用型网站。
timeit 模块
timeit 模块定义了接受两个参数的 Timer 类。两个参数都是字符串。 第一个参数是你要计时的语句或者函数。 传递给 Timer 的第二个参数是为第一个参数语句构建环境的导入语句。 从内部讲, timeit 构建起一个独立的虚拟环境, 手工地执行建立语句,然后手工地编译和执行被计时语句。
一旦有了 Timer 对象,最简单的事就是调用 timeit(),它接受一个参数为每个测试中调用被计时语句的次数,默认为一百万次;返回所耗费的秒数。
Timer 对象的另一个主要方法是 repeat(), 它接受两个可选参数。 第一个参数是重复整个测试的次数,第二个参数是每个测试中调用被计时语句的次数。 两个参数都是可选的,它们的默认值分别是 3 和 1000000。 repeat() 方法返回以秒记录的每个测试循环的耗时列表。Python 有一个方便的 min 函数可以把输入的列表返回成最小值,如: min(t.repeat(3, 1000000))
你可以在命令行使用 timeit 模块来测试一个已存在的 Python 程序,而不需要修改代码。
再给你个例子,你就知道怎么做了。
# -*- coding: utf-8 -*-
#!/bin/env python
def test1():
n=0
for i in range(101):
n+=i
return n
def test2():
return sum(range(101))
def test3():
return sum(x for x in range(101))
if __name__=='__main__':
from timeit import Timer
t1=Timer("test1()","from __main__ import test1")
t2=Timer("test2()","from __main__ import test2")
t3=Timer("test3()","from __main__ import test3")
print t1.timeit(1000000)
print t2.timeit(1000000)
print t3.timeit(1000000)
print t1.repeat(3,1000000)
print t2.repeat(3,1000000)
print t3.repeat(3,1000000)
python 统计 函数运行 次数。
import time
def time_me(fn):
def _wrapper(*args, **kwargs):
start = time.clock()
fn(*args, **kwargs)
print "%s cost %s second"%(fn.__name__, time.clock() - start)
return _wrapper
#这个装饰器可以在方便地统计函数运行的耗时。
#用来分析脚本的性能是最好不过了。
#这样用:
@time_me
def test(x, y):
time.sleep(0.1)
@time_me
def test2(x):
time.sleep(0.2)
test(1, 2)
test2(2)
#输出:
#test cost 0.1001529524 second
#test2 cost 0.199968431742 second
Python:
Python(英语发音:/ˈpaɪθən/), 是一种面向对象、解释型计算机程序设计语言,由Guido van Rossum于1989年发明,第一个公开发行版发行于1991年。
Python是纯粹的自由软件, 源代码和解释器CPython遵循 GPL(GNU General Public License)协议[1] 。
Python语法简洁清晰,特色之一是强制用空白符(white space)作为语句缩进。
Python具有丰富和强大的库。它常被昵称为胶水语言,能够把用其他语言制作的各种模块(尤其是C/C++)很轻松地联结在一起。常见的一种应用情形是,使用Python快速生成程序的原型(有时甚至是程序的最终界面),然后对其中有特别要求的部分,用更合适的语言改写,比如3D游戏中的图形渲染模块,性能要求特别高,就可以用C/C++重写,而后封装为Python可以调用的扩展类库。需要注意的是在您使用扩展类库时可能需要考虑平台问题,某些可能不提供跨平台的实现。
找出python程序中运行时最耗时间的部分
那就是profile和cProfile模块:
import cProfile
cProfile.run('function....')
另外,time模块,在不同的函数的开头和结尾分别计时,然后将两个时间相减,就可以获得这段函数的运行时间了,然后在看哪段函数占的时间比较大:
import time
t1=time.time()
##you function segment here
t2=time.time()
timediff=t2-t1
python里since的作用
功能:计算消耗的时间,返回时间格式 importmath, time deftimeSince(since): # 构建时间计算函数 "获得每次打印的训练耗时,since是训练开始时间" # 获得当前时间 now = time.time() # 获得时间差,是训练耗时 s = now - since # 将秒转化为分钟,并取整 m = math.floor(s /60) # 计算剩下不够凑成1分钟的秒数 s -= m *60 # 返回指定格式的耗时 return'%dm %ds'% (m, s)。
在python里用time.time判断函数的执行时间靠谱吗
使用time.time来统计函数的执行时间,程序只会执行一次,存在很大的随机因素。
timtit包就可以重复执行函数多次,然后将多次执行结果取平均值。相比起来更优。
然而程序执行时间很大程度还受计算机性能的影响,衡量程序好坏更靠谱的手段是计算时间复杂度。
「低门槛 手把手」python 装饰器(Decorators)原理说明
本文目的是由浅入深地介绍python装饰器原理
装饰器(Decorators)是 Python 的一个重要部分
其功能是, 在不修改原函数(类)定义代码的情况下,增加新的功能
为了理解和实现装饰器,我们先引入2个核心操作:
在这个例子中,函数hi的形参name,默认为'world'
在函数内部,又定义了另一个函数 howdoyoudo,定义这个函数时,将形参name作为新函数的形参name2的默认值。
因此,在函数内部调用howdoyoudo()时,将以调用hi时的实参为默认值,但也可以给howdoyoudo输入其他参数。
上面的例子运行后输出结果为:
这里新定义的howdoyoudo可以称作一个“闭包”。不少关于装饰器的blog都提到了这个概念,但其实没必要给它取一个多专业的名字。我们知道闭包是 函数内的函数 就可以了
当我们进行 def 的时候,我们在做什么?
这时,hi函数,打印一个字符串,同时返回一个字符串。
但hi函数本身也是一个对象,一个可以执行的对象。执行的方式是hi()。
这里hi和hi()有本质区别,
hi 代表了这个函数对象本身
hi() 则是运行了函数,得到函数的返回值。
作为对比,可以想象以下代码
此时也是b存在,可以正常使用。
我们定义2个函数,分别实现自加1, 自乘2,
再定义一个函数double_exec,内容是将某个函数调用2次
在调用double_exec时,可以将函数作为输入传进来
输出结果就是
7
27
同样,也可以将函数作为输出
输出结果为
6
10
有了以上两个核心操作,我们可以尝试构造装饰器了。
装饰器的目的: 在不修改原函数(类)定义代码的情况下,增加新的功能
试想一下,现在有一个原函数
在不修改原函数定义代码的情况下,如果想进行函数内容的添加,可以将这个函数作为一个整体,添加到这样的包裹中:
我们定义了一个my_decorator函数,这个函数进行了一种操作:
对传入的f,添加操作(运行前后增加打印),并把添加操作后的内容连同运行原函数的内容,一起传出
这个my_decorator,定义了一种增加前后打印内容的行为
调用my_decorator时,对这个行为进行了操作。
因此,new_function是一个在original_function上增加了前后打印行为的新函数
这个过程被可以被称作装饰。
这里已经可以发现,装饰器本身对于被装饰的函数是什么,是不需要考虑的。装饰器本身只定义了一种装饰行为,这个行为是通过装饰器内部的闭包函数()进行定义的。
运行装饰前后的函数,可以清晰看到装饰的效果
我们复现一下实际要用装饰器的情况,我们往往有一种装饰器,想应用于很多个函数,比如
此时,如果我们想给3个print函数都加上装饰器,需要这么做
实际调用的时候,就需要调用添加装饰器的函数名了
当然,也可以赋值给原函数名
这样至少不需要管理一系列装饰前后的函数。
同时,在不需要进行装饰的时候,需要把
全部删掉。
事实上,这样并不方便,尤其对于更复杂的装饰器来说
为此,python提供了一种简写方式
这个定义print1函数前的@my_decorator,相当于在定义完print1后,自动直接运行了
不论采用@my_decorator放在新函数前,还是显示地重写print1 = my_decorator(print1),都会存在一个问题:
装饰后的函数,名字改变了(其实不止名字,一系列的索引都改变了)
输出结果为:
这个现象的原因是,装饰行为本身,是通过构造了一个新的函数(例子中是wrap_func函数)来实现装饰这个行为的,然后把这个修改后的函数赋给了原函数名。
这样,会导致我们预期的被装饰函数的一些系统变量(比如__name__)发生了变化。
对此,python提供了解决方案:
经过这个行为后,被装饰函数的系统变量问题被解决了
输出结果为
刚才的例子都比较简单,被装饰的函数是没有参数的。如果被装饰的函数有参数,只需要在定义装饰行为时(事实上,这个才更通用),增加(*args, **kwargs)描述即可
之前的描述中可以感受到,对于例子中的装饰行为(前后加打印),函数被装饰后,本质上是调用了新的装饰函数wrap_func。
因此,如果原函数需要有输入参数传递,只需要在wrap_func(或其他任意名字的装饰函数)定义时,也增加参数输入(*args, **kwargs),并将这些参数,原封不动地传给待装饰函数f。
这种定义装饰行为的方式更具有普遍性,忘记之前的定义方式吧
我们试一下
输出
这里需要注意的是,如果按照以下的方式定义装饰器
那么以下语句将不会执行
因为装饰后实际的函数wrap_func(虽然名字被改成了原函数,系统参数也改成了原函数),运行到return f(*args, **kwargs) 的时候已经结束了
因为装饰器my_decorator本身也是可以输入的,因此,只需要在定义装饰器时,增加参数,并在后续函数中使用就可以了,比如
此时装饰器已经可以有输入参数了
输出
你可能发现,为什么不用简写版的方法了
因为以上代码会报错!!
究其原因,虽然
等价于
但是,
并不等价于
这本身和@语法有关,使用@my_decorator时,是系统在应用一个以单个函数作为参数的闭包函数。即,@是不能带参数的。
但是你应该发现了,之前的@wraps(f)不是带参数了吗?请仔细观察以下代码
通过一层嵌套,my_decorator_with_parma本质上是返回了一个参数仅为一个函数的函数(my_decorator),但因为my_decorator对my_decorator_with_parma来说是一个闭包,my_decorator_with_parma是可以带参数的。(这句话真绕)
通过以上的定义,我们再来看
可以这么理解,my_decorator_with_parma(msg='yusheng')的结果是原来的my_decorator函数,同时,因为my_decorator_with_parma可以传参,参数实际上是参与了my_decorator的(因为my_decorator对my_decorator_with_parma是闭包), my_decorator_with_parma(msg='yusheng') 全等于 一个有参数参加的my_decorator
因此,以上代码等价于有参数msg传递的
比较绕,需要理解一下,或者干脆强记这种范式:
以上范式包含函数的输入输出、装饰器的输入,可以应对大部分情况了。
实验一下:
输出
以上是一个log装饰器,利用datetime统计了函数的耗时,
并且,装饰器可以进行输出文件操作,如果给出了文件路径,则输出文件,否则就打印。
利用这个装饰器,可以灵活地进行耗时统计
不设置输出文件地址,则打印。运行结果为:
也可以输出到文件
输出结果为
同时在当前目录生成了一个test.log 文件,内容为:
以上的装饰器都是以函数形式出现的,但我们可以稍做改写,将装饰器以类的形式实现。
这个装饰器类Log 上个例子里的装饰器函数log功能是一样的,同时,这个装饰器类还可以作为基类被其他继承,进一步增加功能。
原文
网站栏目:关于python统计函数耗时的信息
URL分享:http://myzitong.com/article/doohchp.html