包含python写高斯函数的词条
高斯函数
高斯函数
站在用户的角度思考问题,与客户深入沟通,找到陇川网站设计与陇川网站推广的解决方案,凭借多年的经验,让设计与互联网技术结合,创造个性化、用户体验好的作品,建站类型包括:网站制作、成都网站设计、企业官网、英文网站、手机端网站、网站推广、域名申请、网页空间、企业邮箱。业务覆盖陇川地区。
设x∈R , 用 [x]表示不超过x 的最大整数则 y= [x] 称为高斯函数,也叫取整函数。
任意一个实数都能写成整数部分与非负纯小数之和,即:x= [x] + α(0α1) ,所以有:[x]=x[x]+1 ,这里[x] 是 x的整数部分,而= x- [x] 是x 的小数部分。
y=〔x〕叫高斯函数,记号〔x〕表示不超过x的最大整数.如 �〔-0.128〕�=-1,〔19.98〕=19等等.含有记号〔x〕的数学问题,一方面因为它是整数,所以经常与数论问题联系在一起,另一方面因为〔x〕满足不等式x-1<〔x〕≤x<〔x〕+1,因而借助于不等式又容易使问题得到解决。
建议收藏!10 种 Python 聚类算法完整操作示例
聚类或聚类分析是无监督学习问题。它通常被用作数据分析技术,用于发现数据中的有趣模式,例如基于其行为的客户群。有许多聚类算法可供选择,对于所有情况,没有单一的最佳聚类算法。相反,最好探索一系列聚类算法以及每种算法的不同配置。在本教程中,你将发现如何在 python 中安装和使用顶级聚类算法。完成本教程后,你将知道:
聚类分析,即聚类,是一项无监督的机器学习任务。它包括自动发现数据中的自然分组。与监督学习(类似预测建模)不同,聚类算法只解释输入数据,并在特征空间中找到自然组或群集。
群集通常是特征空间中的密度区域,其中来自域的示例(观测或数据行)比其他群集更接近群集。群集可以具有作为样本或点特征空间的中心(质心),并且可以具有边界或范围。
聚类可以作为数据分析活动提供帮助,以便了解更多关于问题域的信息,即所谓的模式发现或知识发现。例如:
聚类还可用作特征工程的类型,其中现有的和新的示例可被映射并标记为属于数据中所标识的群集之一。虽然确实存在许多特定于群集的定量措施,但是对所识别的群集的评估是主观的,并且可能需要领域专家。通常,聚类算法在人工合成数据集上与预先定义的群集进行学术比较,预计算法会发现这些群集。
有许多类型的聚类算法。许多算法在特征空间中的示例之间使用相似度或距离度量,以发现密集的观测区域。因此,在使用聚类算法之前,扩展数据通常是良好的实践。
一些聚类算法要求您指定或猜测数据中要发现的群集的数量,而另一些算法要求指定观测之间的最小距离,其中示例可以被视为“关闭”或“连接”。因此,聚类分析是一个迭代过程,在该过程中,对所识别的群集的主观评估被反馈回算法配置的改变中,直到达到期望的或适当的结果。scikit-learn 库提供了一套不同的聚类算法供选择。下面列出了10种比较流行的算法:
每个算法都提供了一种不同的方法来应对数据中发现自然组的挑战。没有最好的聚类算法,也没有简单的方法来找到最好的算法为您的数据没有使用控制实验。在本教程中,我们将回顾如何使用来自 scikit-learn 库的这10个流行的聚类算法中的每一个。这些示例将为您复制粘贴示例并在自己的数据上测试方法提供基础。我们不会深入研究算法如何工作的理论,也不会直接比较它们。让我们深入研究一下。
在本节中,我们将回顾如何在 scikit-learn 中使用10个流行的聚类算法。这包括一个拟合模型的例子和可视化结果的例子。这些示例用于将粘贴复制到您自己的项目中,并将方法应用于您自己的数据。
1.库安装
首先,让我们安装库。不要跳过此步骤,因为你需要确保安装了最新版本。你可以使用 pip Python 安装程序安装 scikit-learn 存储库,如下所示:
接下来,让我们确认已经安装了库,并且您正在使用一个现代版本。运行以下脚本以输出库版本号。
运行该示例时,您应该看到以下版本号或更高版本。
2.聚类数据集
我们将使用 make _ classification ()函数创建一个测试二分类数据集。数据集将有1000个示例,每个类有两个输入要素和一个群集。这些群集在两个维度上是可见的,因此我们可以用散点图绘制数据,并通过指定的群集对图中的点进行颜色绘制。这将有助于了解,至少在测试问题上,群集的识别能力如何。该测试问题中的群集基于多变量高斯,并非所有聚类算法都能有效地识别这些类型的群集。因此,本教程中的结果不应用作比较一般方法的基础。下面列出了创建和汇总合成聚类数据集的示例。
运行该示例将创建合成的聚类数据集,然后创建输入数据的散点图,其中点由类标签(理想化的群集)着色。我们可以清楚地看到两个不同的数据组在两个维度,并希望一个自动的聚类算法可以检测这些分组。
已知聚类着色点的合成聚类数据集的散点图接下来,我们可以开始查看应用于此数据集的聚类算法的示例。我已经做了一些最小的尝试来调整每个方法到数据集。3.亲和力传播亲和力传播包括找到一组最能概括数据的范例。
它是通过 AffinityPropagation 类实现的,要调整的主要配置是将“ 阻尼 ”设置为0.5到1,甚至可能是“首选项”。下面列出了完整的示例。
运行该示例符合训练数据集上的模型,并预测数据集中每个示例的群集。然后创建一个散点图,并由其指定的群集着色。在这种情况下,我无法取得良好的结果。
数据集的散点图,具有使用亲和力传播识别的聚类
4.聚合聚类
聚合聚类涉及合并示例,直到达到所需的群集数量为止。它是层次聚类方法的更广泛类的一部分,通过 AgglomerationClustering 类实现的,主要配置是“ n _ clusters ”集,这是对数据中的群集数量的估计,例如2。下面列出了完整的示例。
运行该示例符合训练数据集上的模型,并预测数据集中每个示例的群集。然后创建一个散点图,并由其指定的群集着色。在这种情况下,可以找到一个合理的分组。
使用聚集聚类识别出具有聚类的数据集的散点图
5.BIRCHBIRCH
聚类( BIRCH 是平衡迭代减少的缩写,聚类使用层次结构)包括构造一个树状结构,从中提取聚类质心。
它是通过 Birch 类实现的,主要配置是“ threshold ”和“ n _ clusters ”超参数,后者提供了群集数量的估计。下面列出了完整的示例。
运行该示例符合训练数据集上的模型,并预测数据集中每个示例的群集。然后创建一个散点图,并由其指定的群集着色。在这种情况下,可以找到一个很好的分组。
使用BIRCH聚类确定具有聚类的数据集的散点图
6.DBSCANDBSCAN
聚类(其中 DBSCAN 是基于密度的空间聚类的噪声应用程序)涉及在域中寻找高密度区域,并将其周围的特征空间区域扩展为群集。
它是通过 DBSCAN 类实现的,主要配置是“ eps ”和“ min _ samples ”超参数。下面列出了完整的示例。
运行该示例符合训练数据集上的模型,并预测数据集中每个示例的群集。然后创建一个散点图,并由其指定的群集着色。在这种情况下,尽管需要更多的调整,但是找到了合理的分组。
使用DBSCAN集群识别出具有集群的数据集的散点图
7.K均值
K-均值聚类可以是最常见的聚类算法,并涉及向群集分配示例,以尽量减少每个群集内的方差。
它是通过 K-均值类实现的,要优化的主要配置是“ n _ clusters ”超参数设置为数据中估计的群集数量。下面列出了完整的示例。
运行该示例符合训练数据集上的模型,并预测数据集中每个示例的群集。然后创建一个散点图,并由其指定的群集着色。在这种情况下,可以找到一个合理的分组,尽管每个维度中的不等等方差使得该方法不太适合该数据集。
使用K均值聚类识别出具有聚类的数据集的散点图
8.Mini-Batch
K-均值Mini-Batch K-均值是 K-均值的修改版本,它使用小批量的样本而不是整个数据集对群集质心进行更新,这可以使大数据集的更新速度更快,并且可能对统计噪声更健壮。
它是通过 MiniBatchKMeans 类实现的,要优化的主配置是“ n _ clusters ”超参数,设置为数据中估计的群集数量。下面列出了完整的示例。
运行该示例符合训练数据集上的模型,并预测数据集中每个示例的群集。然后创建一个散点图,并由其指定的群集着色。在这种情况下,会找到与标准 K-均值算法相当的结果。
带有最小批次K均值聚类的聚类数据集的散点图
9.均值漂移聚类
均值漂移聚类涉及到根据特征空间中的实例密度来寻找和调整质心。
它是通过 MeanShift 类实现的,主要配置是“带宽”超参数。下面列出了完整的示例。
运行该示例符合训练数据集上的模型,并预测数据集中每个示例的群集。然后创建一个散点图,并由其指定的群集着色。在这种情况下,可以在数据中找到一组合理的群集。
具有均值漂移聚类的聚类数据集散点图
10.OPTICSOPTICS
聚类( OPTICS 短于订购点数以标识聚类结构)是上述 DBSCAN 的修改版本。
它是通过 OPTICS 类实现的,主要配置是“ eps ”和“ min _ samples ”超参数。下面列出了完整的示例。
运行该示例符合训练数据集上的模型,并预测数据集中每个示例的群集。然后创建一个散点图,并由其指定的群集着色。在这种情况下,我无法在此数据集上获得合理的结果。
使用OPTICS聚类确定具有聚类的数据集的散点图
11.光谱聚类
光谱聚类是一类通用的聚类方法,取自线性线性代数。
它是通过 Spectral 聚类类实现的,而主要的 Spectral 聚类是一个由聚类方法组成的通用类,取自线性线性代数。要优化的是“ n _ clusters ”超参数,用于指定数据中的估计群集数量。下面列出了完整的示例。
运行该示例符合训练数据集上的模型,并预测数据集中每个示例的群集。然后创建一个散点图,并由其指定的群集着色。在这种情况下,找到了合理的集群。
使用光谱聚类聚类识别出具有聚类的数据集的散点图
12.高斯混合模型
高斯混合模型总结了一个多变量概率密度函数,顾名思义就是混合了高斯概率分布。它是通过 Gaussian Mixture 类实现的,要优化的主要配置是“ n _ clusters ”超参数,用于指定数据中估计的群集数量。下面列出了完整的示例。
运行该示例符合训练数据集上的模型,并预测数据集中每个示例的群集。然后创建一个散点图,并由其指定的群集着色。在这种情况下,我们可以看到群集被完美地识别。这并不奇怪,因为数据集是作为 Gaussian 的混合生成的。
使用高斯混合聚类识别出具有聚类的数据集的散点图
在本文中,你发现了如何在 python 中安装和使用顶级聚类算法。具体来说,你学到了:
python中plt.post是什么函数
2018-05-04 11:11:36
122点赞
qiurisiyu2016
码龄7年
关注
matplotlib
1、plt.plot(x,y)
plt.plot(x,y,format_string,**kwargs)
x轴数据,y轴数据,format_string控制曲线的格式字串
format_string 由颜色字符,风格字符,和标记字符
import matplotlib.pyplot as plt
plt.plot([1,2,3,6],[4,5,8,1],’g-s’)
plt.show()
结果
**kwards:
color 颜色
linestyle 线条样式
marker 标记风格
markerfacecolor 标记颜色
markersize 标记大小 等等
plt.plot([5,4,3,2,1])
plt.show()
结果
plt.plot([20,2,40,6,80]) #缺省x为[0,1,2,3,4,...]
plt.show()
结果
plt.plot()参数设置
Property Value Type
alpha 控制透明度,0为完全透明,1为不透明
animated [True False]
antialiased or aa [True False]
clip_box a matplotlib.transform.Bbox instance
clip_on [True False]
clip_path a Path instance and a Transform instance, a Patch
color or c 颜色设置
contains the hit testing function
dash_capstyle [‘butt’ ‘round’ ‘projecting’]
dash_joinstyle [‘miter’ ‘round’ ‘bevel’]
dashes sequence of on/off ink in points
data 数据(np.array xdata, np.array ydata)
figure 画板对象a matplotlib.figure.Figure instance
label 图示
linestyle or ls 线型风格[‘-’ ‘–’ ‘-.’ ‘:’ ‘steps’ …]
linewidth or lw 宽度float value in points
lod [True False]
marker 数据点的设置[‘+’ ‘,’ ‘.’ ‘1’ ‘2’ ‘3’ ‘4’]
markeredgecolor or mec any matplotlib color
markeredgewidth or mew float value in points
markerfacecolor or mfc any matplotlib color
markersize or ms float
markevery [ None integer (startind, stride) ]
picker used in interactive line selection
pickradius the line pick selection radius
solid_capstyle [‘butt’ ‘round’ ‘projecting’]
solid_joinstyle [‘miter’ ‘round’ ‘bevel’]
transform a matplotlib.transforms.Transform instance
visible [True False]
xdata np.array
ydata np.array
zorder any number
确定x,y值,将其打印出来
x=np.linspace(-1,1,5)
y=2*x+1
plt.plot(x,y)
plt.show()
2、plt.figure()用来画图,自定义画布大小
fig1 = plt.figure(num='fig111111', figsize=(10, 3), dpi=75, facecolor='#FFFFFF', edgecolor='#0000FF')
plt.plot(x,y1) #在变量fig1后进行plt.plot操作,图形将显示在fig1中
fig2 = plt.figure(num='fig222222', figsize=(6, 3), dpi=75, facecolor='#FFFFFF', edgecolor='#FF0000')
plt.plot(x,y2) #在变量fig2后进行plt.plot操作,图形将显示在fig2中
plt.show()
plt.close()
结果
fig1 = plt.figure(num='fig111111', figsize=(10, 3), dpi=75, facecolor='#FFFFFF', edgecolor='#0000FF')
plt.plot(x,y1)
plt.plot(x,y2)
fig2 = plt.figure(num='fig222222', figsize=(6, 3), dpi=75, facecolor='#FFFFFF', edgecolor='#FF0000')
plt.show()
plt.close()
结果:
3、plt.subplot(222)
将figure设置的画布大小分成几个部分,参数‘221’表示2(row)x2(colu),即将画布分成2x2,两行两列的4块区域,1表示选择图形输出的区域在第一块,图形输出区域参数必须在“行x列”范围 ,此处必须在1和2之间选择——如果参数设置为subplot(111),则表示画布整个输出,不分割成小块区域,图形直接输出在整块画布上
plt.subplot(222)
plt.plot(y,xx) #在2x2画布中第二块区域输出图形
plt.show()
plt.subplot(223) #在2x2画布中第三块区域输出图形
plt.plot(y,xx)
plt.subplot(224) # 在在2x2画布中第四块区域输出图形
plt.plot(y,xx)
4、plt.xlim设置x轴或者y轴刻度范围
如
plt.xlim(0,1000) # 设置x轴刻度范围,从0~1000 #lim为极限,范围
plt.ylim(0,20) # 设置y轴刻度的范围,从0~20
5、plt.xticks():设置x轴刻度的表现方式
fig2 = plt.figure(num='fig222222', figsize=(6, 3), dpi=75, facecolor='#FFFFFF', edgecolor='#FF0000')
plt.plot(x,y2)
plt.xticks(np.linspace(0,1000,15,endpoint=True)) # 设置x轴刻度
plt.yticks(np.linspace(0,20,10,endpoint=True))
结果
6、ax2.set_title('xxx')设置标题,画图
#产生[1,2,3,...,9]的序列
x = np.arange(1,10)
y = x
fig = plt.figure()
ax1 = fig.add_subplot(221)
#设置标题
ax1.set_title('Scatter Plot1')
plt.xlabel('M')
plt.ylabel('N')
ax2 = fig.add_subplot(222)
ax2.set_title('Scatter Plot2clf')
#设置X轴标签
plt.xlabel('X') #设置X/Y轴标签是在对应的figure后进行操作才对应到该figure
#设置Y轴标签
plt.ylabel('Y')
#画散点图
ax1.scatter(x,y,c = 'r',marker = 'o') #可以看出画散点图是在对figure进行操作
ax2.scatter(x,y,c = 'b',marker = 'x')
#设置图标
plt.legend('show picture x1 ')
#显示所画的图
plt.show()
结果
7、plt.hist()绘制直方图(可以将高斯函数这些画出来)
绘图都可以调用matplotlib.pyplot库来进行,其中的hist函数可以直接绘制直方图
调用方式:
n, bins, patches = plt.hist(arr, bins=10, normed=0, facecolor='black', edgecolor='black',alpha=1,histtype='bar')
hist的参数非常多,但常用的就这六个,只有第一个是必须的,后面四个可选
arr: 需要计算直方图的一维数组
bins: 直方图的柱数,可选项,默认为10
normed: 是否将得到的直方图向量归一化。默认为0
facecolor: 直方图颜色
edgecolor: 直方图边框颜色
alpha: 透明度
histtype: 直方图类型,‘bar’, ‘barstacked’, ‘step’, ‘stepfilled’
返回值 :
n: 直方图向量,是否归一化由参数normed设定
bins: 返回各个bin的区间范围
patches: 返回每个bin里面包含的数据,是一个list
from skimage import data
import matplotlib.pyplot as plt
img=data.camera()
plt.figure("hist")
arr=img.flatten()
n, bins, patches = plt.hist(arr, bins=256, normed=1,edgecolor='None',facecolor='red')
plt.show()
例:
mu, sigma = 0, .1
s = np.random.normal(loc=mu, scale=sigma, size=1000)
a,b,c = plt.hist(s, bins=3)
print("a: ",a)
print("b: ",b)
print("c: ",c)
plt.show()
结果:
a: [ 85. 720. 195.] #每个柱子的值
b: [-0.36109509 -0.1357318 0.08963149 0.31499478] #每个柱的区间范围
c: a list of 3 Patch objects #总共多少柱子
8、ax1.scatter(x,y,c = 'r',marker = 'o')
使用注意:确定了figure就一定要确定象限,然后用scatter,或者不确定象限,直接使用plt.scatter
x = np.arange(1,10)
y = x
fig = plt.figure()
a=plt.subplot() #默认为一个象限
# a=fig.add_subplot(222)
a.scatter(x,y,c='r',marker='o')
plt.show()
结果
x = np.arange(1,10)
y = x
plt.scatter(x,y,c='r',marker='o')
plt.show()
结果
import numpy as np
import matplotlib.pyplot as plt
x = np.arange(1,10)
y = x
plt.figure()
plt.scatter(x,y,c='r',marker='o')
plt.show()
结果
文章知识点与官方知识档案匹配
Python入门技能树基础语法函数
211242 人正在系统学习中
打开CSDN APP,看更多技术内容
plt的一些函数的使用_班花i的博客_plt函数
plt.函数 Fwuyi的博客 6513 1plt.figure( )函数:创建画布 2plt.plot(x, y, format_string, label="图例名"):绘制点和线, 并控制样式。 其中x是x轴数据,y是y轴数据,xy一般是列表和数组。format_string 是字符串的格式包括线...
继续访问
Python的数据科学函数包(三)——matplotlib(plt)_hxxjxw的博客...
import matplotlib.pyplot as plt plt.imshow(img) plt.show() plt.imshow()有一个cmap参数,即指定颜色映射规则。默认的cmap即颜料板是十色环 哪怕是单通道图,值在0-1之间,用plt.imshow()仍然可以显示彩色图,就是因为颜色映射的关...
继续访问
对Python中plt的画图函数详解
今天小编就为大家分享一篇对Python中plt的画图函数详解,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
plt.plot()函数详解
plt.plot()函数详细介绍 plt.plot(x, y, format_string, **kwargs) 参数 说明 x X轴数据,列表或数组,可选 y Y轴数据,列表或数组 format_string 控制曲线的格式字符串,可选 **kwargs 第二组或更多(x,y,format_string),可画多条曲线 format_string 由颜色字符、风格字符、标记字符组成 颜色字符 'b' 蓝色 'm' 洋红色 magenta 'g' 绿色 'y.
继续访问
python图像处理基础知识(plt库函数说明)_小草莓爸爸的博客_p...
1.画图(plt库)1.1 plt.figure(num=’’,figsize=(x, y),dpi= ,facecolor=’’,edgecolor=’’)num:表示整个图标的标题 figsize:表示尺寸 facecolor:表示1.2 plt.plot(x,y,format_string,**kwargs)...
继续访问
plt的一些函数使用_neo3301的博客_plt函数
1、plt.plot(x,y) plt.plot(x,y,format_string,**kwargs) x轴数据,y轴数据,format_string控制曲线的格式字串 format_string 由颜色字符,风格字符,和标记字符 import matplotlib.pyplot as plt ...
继续访问
最新发布 python plt 绘图详解(plt.版本)
python plt绘图详解
继续访问
python图像处理基础知识(plt库函数说明)
import matplotlib.pyplot as plt的一些基础用法,包括直方图
继续访问
plt.subplot() 函数解析_Ensoleile。的博客_plt.subplot
plt.subplot()函数用于直接制定划分方式和位置进行绘图。 函数原型 subplot(nrows, ncols, index, **kwargs),一般我们只用到前三个参数,将整个绘图区域分成 nrows 行和 ncols 列,而 index 用于对子图进行编号。
继续访问
...中plt的画图函数_Ethan的博客的博客_python的plt函数
1、plt.legend plt.legend(loc=0)#显示图例的位置,自适应方式 说明: 'best' : 0, (only implemented for axes legends)(自适应方式) 'upper right' : 1, 'upper left' : 2, 'lower left' : 3, 'lower right' : 4, ...
继续访问
plt.函数
1 plt.figure( ) 函数:创建画布 2 plt.plot(x, y, format_string, label="图例名"):绘制点和线, 并控制样式。 其中x是x轴数据,y是y轴数据,xy一般是列表和数组。format_string 是字符串的格式包括线条颜色、点类型、线类型三个部分。向参数label传入图例名,使用plt.legend( )创建图例。 2.1 画一条含x、y的线条 import matplotlib.pyplot as plt x = [1, 2, 3, 4] y
继续访问
Python深度学习入门之plt画图工具基础使用(注释详细,超级简单)
Python自带的plt是深度学习最常用的库之一,在发表文章时必然得有图作为支撑,plt为深度学习必备技能之一。作为深度学习入门,只需要掌握一些基础画图操作即可,其他等要用到的时候看看函数API就行。 1 导入plt库(名字长,有点难记) import matplotlib.pyplot as plt 先随便画一个图,保存一下试试水: plt.figure(figsize=(12,8), dpi=80) plt.plot([1,2,6,4],[4,5,6,9]) plt.savefig('./plt_pn
继续访问
python画图plt函数学习_dlut_yan的博客_python plt
figure()函数可以帮助我们同时处理生成多个图,而subplot()函数则用来实现,在一个大图中,出现多个小的子图。 处理哪个figure,则选择哪个figure,再进行画图。 参考博客 importmatplotlib.pyplotaspltimportnumpyasnp x=np.arange(-1,1,0.1...
继续访问
plt.plot()函数_安之若醇的博客_plt.plot()函数
plt.plot()函数是matplotlib.pyplot用于画图的函数传一个值列表:import numpy as npimport matplotlib.pyplot as pltt=[1,2,3,4,5]y=[3,4,5,6,7]plt.plot(t, y)当x省略的时候,默认[0,1…,N-1]递增可以传元组也可以传...
继续访问
python画图plt函数学习
python中的绘图工具 :matplotli,专门用于画图。 一. 安装与导入 工具包安装:conda install matplotli 导入:import matplotlib.pyplot as plt 画图主要有:列表绘图;多图绘图;数组绘图 二. 列表绘图 1. 基础绘图:plt.plot;plt.show import matplotlib.pyplot as plt x = [1, 2, 3, 4] y = [1, 4, 9, 16] plt.plot(x, y) plt.show()
继续访问
python中plt的含义_对Python中plt的画图函数详解
1、plt.legendplt.legend(loc=0)#显示图例的位置,自适应方式说明:'best' : 0, (only implemented for axes legends)(自适应方式)'upper right' : 1,'upper left' : 2,'lower left' : 3,'lower right' : 4,'right' : 5,'cent...
继续访问
Python中plt绘图包的基本使用方法
其中,前两个输入参数表示x轴和y轴的坐标,plot函数将提供的坐标点连接,即成为要绘制的各式线型。常用的参数中,figsize需要一个元组值,表示空白画布的横纵坐标比;plt.xticks()和plt.yticks()函数用于设置坐标轴的步长和刻度。plt.xlabel()、plt.ylabel()和plt.title()函数分别用于设置x坐标轴、y坐标轴和图标的标题信息。的数据处理时,发现了自己对plt的了解和使用的缺失,因此进行一定的基础用法的学习,方便之后自己的使用,而不需要频繁的查阅资料。...
继续访问
python-plt.xticks与plt.yticks
栗子: plt.figure(figsize=(10, 10)) for i in range(25): plt.subplot(5, 5, i+1) plt.xticks([]) plt.yticks([]) plt.grid(False) plt.imshow(train_images[i], cmap=plt.cm.binary) plt.xlabel(class_names[train_labels[i]]) plt.show() 设置x或y轴对应显
继续访问
plt绘图总结
matplotlib绘图
继续访问
Python的数据科学函数包(三)——matplotlib(plt)
继续访问
热门推荐 python plt 画图
使用csv数据文件在百度网盘 import pandas as pd unrate = pd.read_csv('unrate.csv') # pd.to_datetime() 转换成日期格式,即由 1948/1/1 转换为 1948-01-01 unrate['DATE'] = pd.to_datetime(unrate['DATE']) print(unrate.head(12)) ...
继续访问
python数据可视化实现步骤,Python数据可视化图实现过程详解
Python数据可视化图实现过程详解更多python视频教程请到菜鸟教程画分布图代码示例:# encoding=utf-8import matplotlib.pyplot as pltfrom pylab import * # 支持中文mpl.rcParams[‘font.sans-serif’] = [‘SimHei’]‘mention...
继续访问
matplotlib-plt.plot用法
文章目录 英语好的直接参考这个网站 matplotlib.pyplot.plot(*args, scalex=True, scaley=True, data=None, **kwargs) 将x,y绘制为线条或标记 参数: x, y:数据点的水平/垂直坐标。x值是可选的,默认为range(len(y))。通常,这些参数是 一维数组。它们也可以是标量,也可以是二维的(在这种情况下,列代表单独的数据集)。 这些参数不能作为关键字传递。 fmt:格式字符串,格式字符串只是用于快速设置基本行属性的缩
继续访问
python Plt学习
plt的简单学习
继续访问
plt.show()和plt.imshow()的区别
问题:plt.imshow()无法显示图像 解决方法:添加:plt.show(),即 plt.imshow(image) #image表示待处理的图像 plt.show() 原理:plt.imshow()函数负责对图像进行处理,并显示其格式,而plt.show()则是将plt.imshow()处理后的函数显示出来。 ...
继续访问
python题库刷题网站_python在线刷题网站
{"moduleinfo":{"card_count":[{"count_phone":1,"count":1}],"search_count":[{"count_phone":4,"count":4}]},"card":[{"des":"阿里技术人对外发布原创技术内容的最大平台;社区覆盖了云计算、大数据、人工智能、IoT、云原生、数据库、微服务、安全、开发与运维9大技术领域。","link1":...
继续访问
python xticks_Python Matplotlib.pyplot.yticks()用法及代码示例
Matplotlib是Python中的一个库,它是数字的-NumPy库的数学扩展。 Pyplot是Matplotlib模块的基于状态的接口,该模块提供了MATLAB-like接口。Matplotlib.pyplot.yticks()函数matplotlib库的pyplot模块中的annotate()函数用于获取和设置y轴的当前刻度位置和标签。用法: matplotlib.pyplot.yticks...
继续访问
python的plt函数_plt.plot画图函数
[‘font.sans-serif’]=[‘SimHei’]plt.rcParams[‘axes.unicode_minus’] = False#设置横纵坐标的名称以及对应字体格式font1 = {‘weight’ : ‘normal’,‘size’ : 15,...
继续访问
plt函数
写评论
7
794
122
数字图像处理Python实现图像灰度变换、直方图均衡、均值滤波
import CV2
import copy
import numpy as np
import random
使用的是pycharm
因为最近看了《银翼杀手2049》,里面Joi实在是太好看了所以原图像就用Joi了
要求是灰度图像,所以第一步先把图像转化成灰度图像
# 读入原始图像
img = CV2.imread('joi.jpg')
# 灰度化处理
gray = CV2.cvtColor(img, CV2.COLOR_BGR2GRAY)
CV2.imwrite('img.png', gray)
第一个任务是利用分段函数增强灰度对比,我自己随便写了个函数大致是这样的
def chng(a):
if a 255/3:
b = a/2
elif a 255/3*2:
b = (a-255/3)*2 + 255/6
else:
b = (a-255/3*2)/2 + 255/6 +255/3*2
return b
rows = img.shape[0]
cols = img.shape[1]
cover = copy.deepcopy(gray)
for i in range(rows):
for j in range(cols):
cover[i][j] = chng(cover[i][j])
CV2.imwrite('cover.png', cover)
下一步是直方图均衡化
# histogram equalization
def hist_equal(img, z_max=255):
H, W = img.shape
# S is the total of pixels
S = H * W * 1.
out = img.copy()
sum_h = 0.
for i in range(1, 255):
ind = np.where(img == i)
sum_h += len(img[ind])
z_prime = z_max / S * sum_h
out[ind] = z_prime
out = out.astype(np.uint8)
return out
covereq = hist_equal(cover)
CV2.imwrite('covereq.png', covereq)
在实现滤波之前先添加高斯噪声和椒盐噪声(代码来源于网络)
不知道这个椒盐噪声的名字是谁起的感觉隔壁小孩都馋哭了
用到了random.gauss()
percentage是噪声占比
def GaussianNoise(src,means,sigma,percetage):
NoiseImg=src
NoiseNum=int(percetage*src.shape[0]*src.shape[1])
for i in range(NoiseNum):
randX=random.randint(0,src.shape[0]-1)
randY=random.randint(0,src.shape[1]-1)
NoiseImg[randX, randY]=NoiseImg[randX,randY]+random.gauss(means,sigma)
if NoiseImg[randX, randY] 0:
NoiseImg[randX, randY]=0
elif NoiseImg[randX, randY]255:
NoiseImg[randX, randY]=255
return NoiseImg
def PepperandSalt(src,percetage):
NoiseImg=src
NoiseNum=int(percetage*src.shape[0]*src.shape[1])
for i in range(NoiseNum):
randX=random.randint(0,src.shape[0]-1)
randY=random.randint(0,src.shape[1]-1)
if random.randint(0,1)=0.5:
NoiseImg[randX,randY]=0
else:
NoiseImg[randX,randY]=255
return NoiseImg
covereqg = GaussianNoise(covereq, 2, 4, 0.8)
CV2.imwrite('covereqg.png', covereqg)
covereqps = PepperandSalt(covereq, 0.05)
CV2.imwrite('covereqps.png', covereqps)
下面开始均值滤波和中值滤波了
就以n x n为例,均值滤波就是用这n x n个像素点灰度值的平均值代替中心点,而中值就是中位数代替中心点,边界点周围补0;前两个函数的作用是算出这个点的灰度值,后两个是对整张图片进行
#均值滤波模板
def mean_filter(x, y, step, img):
sum_s = 0
for k in range(x-int(step/2), x+int(step/2)+1):
for m in range(y-int(step/2), y+int(step/2)+1):
if k-int(step/2) 0 or k+int(step/2)+1 img.shape[0]
or m-int(step/2) 0 or m+int(step/2)+1 img.shape[1]:
sum_s += 0
else:
sum_s += img[k][m] / (step*step)
return sum_s
#中值滤波模板
def median_filter(x, y, step, img):
sum_s=[]
for k in range(x-int(step/2), x+int(step/2)+1):
for m in range(y-int(step/2), y+int(step/2)+1):
if k-int(step/2) 0 or k+int(step/2)+1 img.shape[0]
or m-int(step/2) 0 or m+int(step/2)+1 img.shape[1]:
sum_s.append(0)
else:
sum_s.append(img[k][m])
sum_s.sort()
return sum_s[(int(step*step/2)+1)]
def median_filter_go(img, n):
img1 = copy.deepcopy(img)
for i in range(img.shape[0]):
for j in range(img.shape[1]):
img1[i][j] = median_filter(i, j, n, img)
return img1
def mean_filter_go(img, n):
img1 = copy.deepcopy(img)
for i in range(img.shape[0]):
for j in range(img.shape[1]):
img1[i][j] = mean_filter(i, j, n, img)
return img1
完整main代码如下:
if __name__ == "__main__":
# 读入原始图像
img = CV2.imread('joi.jpg')
# 灰度化处理
gray = CV2.cvtColor(img, CV2.COLOR_BGR2GRAY)
CV2.imwrite('img.png', gray)
rows = img.shape[0]
cols = img.shape[1]
cover = copy.deepcopy(gray)
for i in range(rows):
for j in range(cols):
cover[i][j] = chng(cover[i][j])
CV2.imwrite('cover.png', cover)
covereq = hist_equal(cover)
CV2.imwrite('covereq.png', covereq)
covereqg = GaussianNoise(covereq, 2, 4, 0.8)
CV2.imwrite('covereqg.png', covereqg)
covereqps = PepperandSalt(covereq, 0.05)
CV2.imwrite('covereqps.png', covereqps)
meanimg3 = mean_filter_go(covereqps, 3)
CV2.imwrite('medimg3.png', meanimg3)
meanimg5 = mean_filter_go(covereqps, 5)
CV2.imwrite('meanimg5.png', meanimg5)
meanimg7 = mean_filter_go(covereqps, 7)
CV2.imwrite('meanimg7.png', meanimg7)
medimg3 = median_filter_go(covereqg, 3)
CV2.imwrite('medimg3.png', medimg3)
medimg5 = median_filter_go(covereqg, 5)
CV2.imwrite('medimg5.png', medimg5)
medimg7 = median_filter_go(covereqg, 7)
CV2.imwrite('medimg7.png', medimg7)
medimg4 = median_filter_go(covereqps, 7)
CV2.imwrite('medimg4.png', medimg4)
OpenCV Python 系列教程4 - OpenCV 图像处理(上)
学习目标:
OpenCV 中有 150 多种色彩空间转化的方法,这里只讨论两种:
HSV的色相范围为[0,179],饱和度范围为[0,255],值范围为[0,255]。不同的软件使用不同的规模。如果要比较 OpenCV 值和它们,你需要标准化这些范围。
HSV 和 HLV 解释
运行结果:该段程序的作用是检测蓝色目标,同理可以检测其他颜色的目标
结果中存在一定的噪音,之后的章节将会去掉它
这是物体跟踪中最简单的方法。一旦你学会了等高线的函数,你可以做很多事情,比如找到这个物体的质心,用它来跟踪这个物体,仅仅通过在相机前移动你的手来画图表,还有很多其他有趣的事情。
菜鸟教程 在线 HSV- BGR 转换
比如要找出绿色的 HSV 值,可以使用上面的程序,得到的值取一个上下界。如上面的取下界 [H-10, 100, 100],上界 [H+10, 255, 255]
或者使用其他工具如 GIMP
学习目标:
对图像进行阈值处理,算是一种最简单的图像分割方法,基于图像与背景之间的灰度差异,此项分割是基于像素级的分割
threshold(src, thresh, maxval, type[, dst]) - retval, dst
计算图像小区域的阈值。所以我们对同一幅图像的不同区域得到不同的阈值,这给我们在不同光照下的图像提供了更好的结果。
三个特殊的输入参数和一个输出参数
adaptiveThreshold(src, maxValue, adaptiveMethod, thresholdType, blockSize, C[, dst]) - dst
opencv-threshold-python
OpenCV 图片集
本节原文
学习目标:
OpenCV 提供两种变换函数: cv2.warpAffine 和 cv2.warpPerspective
cv2.resize() 完成缩放
文档说明
运行结果
说明 : cv2.INTER_LINEAR 方法比 cv2.INTER_CUBIC 还慢,好像与官方文档说的不一致? 有待验证。
速度比较: INTER_CUBIC INTER_NEAREST INTER_LINEAR INTER_AREA INTER_LANCZOS4
改变图像的位置,创建一个 np.float32 类型的变换矩阵,
warpAffine(src, M, dsize[, dst[, flags[, borderMode[, borderValue]]]]) - dst
运行结果:
旋转角度( )是通过一个变换矩阵变换的:
OpenCV 提供的是可调旋转中心的缩放旋转,这样你可以在任何你喜欢的位置旋转。修正后的变换矩阵为
这里
OpenCV 提供了 cv2.getRotationMatrix2D 控制
cv2.getRotationMatrix2D(center, angle, scale) → retval
运行结果
cv2.getAffineTransform(src, dst) → retval
函数关系:
\begin{bmatrix} x'_i \ y'_i \end{bmatrix}\begin{bmatrix} x'_i \ y'_i \end{bmatrix} =
其中
运行结果:图上的点便于观察,两图中的红点是相互对应的
透视变换需要一个 3x3 变换矩阵。转换之后直线仍然保持笔直,要找到这个变换矩阵,需要输入图像上的 4 个点和输出图像上的对应点。在这 4 个点中,有 3 个不应该共线。通过 cv2.getPerspectiveTransform 计算得到变换矩阵,得到的矩阵 cv2.warpPerspective 变换得到最终结果。
本节原文
平滑处理(smoothing)也称模糊处理(bluring),是一种简单且使用频率很高的图像处理方法。平滑处理的用途:常见是用来 减少图像上的噪点或失真 。在涉及到降低图像分辨率时,平滑处理是很好用的方法。
图像滤波:尽量保留图像细节特征的条件下对目标图像的噪声进行抑制,其处理效果的好坏将直接影响到后续图像处理和分析的有效性和可靠性。
消除图像中的噪声成分叫做图像的平滑化或滤波操作。信号或图像的能量大部分集中在幅度谱的低频和中频段,在高频段,有用的信息会被噪声淹没。因此一个能降低高频成分幅度的滤波器就能够减弱噪声的影响。
滤波的目的:抽出对象的特征作为图像识别的特征模式;为适应图像处理的要求,消除图像数字化时混入的噪声。
滤波处理的要求:不能损坏图像的轮廓及边缘等重要信息;图像清晰视觉效果好。
平滑滤波是低频增强的空间滤波技术,目的:模糊和消除噪音。
空间域的平滑滤波一般采用简单平均法,即求邻近像元点的平均亮度值。邻域的大小与平滑的效果直接相关,邻域越大平滑效果越好,但是邻域过大,平滑也会使边缘信息的损失的越大,从而使输出图像变得模糊。因此需要选择合适的邻域。
滤波器:一个包含加权系数的窗口,利用滤波器平滑处理图像时,把这个窗口放在图像上,透过这个窗口来看我们得到的图像。
线性滤波器:用于剔除输入信号中不想要的频率或者从许多频率中选择一个想要的频率。
低通滤波器、高通滤波器、带通滤波器、带阻滤波器、全通滤波器、陷波滤波器
boxFilter(src, ddepth, ksize[, dst[, anchor[, normalize[, borderType]]]]) - dst
均值滤波是方框滤波归一化后的特殊情况。归一化就是要把处理的量缩放到一个范围内如 (0,1),以便统一处理和直观量化。非归一化的方框滤波用于计算每个像素邻近内的积分特性,比如密集光流算法中用到的图像倒数的协方差矩阵。
运行结果:
均值滤波是典型的线性滤波算法,主要方法为邻域平均法,即用一片图像区域的各个像素的均值来代替原图像中的各个像素值。一般需要在图像上对目标像素给出一个模板(内核),该模板包括了其周围的临近像素(比如以目标像素为中心的周围8(3x3-1)个像素,构成一个滤波模板,即 去掉目标像素本身 )。再用模板中的全体像素的平均值来代替原来像素值。即对待处理的当前像素点(x,y),选择一个模板,该模板由其近邻的若干像素组成,求模板中所有像素的均值,再把该均值赋予当前像素点(x,y),作为处理后图像在该点上的灰度个g(x,y),即个g(x,y)=1/m ∑f(x,y) ,其中m为该模板中包含当前像素在内的像素总个数。
均值滤波本身存在着固有的缺陷,即它不能很好地保护图像细节,在图像去噪的同时也破坏了图像的细节部分,从而使图像变得模糊,不能很好地去除噪声点。
cv2.blur(src, ksize[, dst[, anchor[, borderType]]]) → dst
结果:
高斯滤波:线性滤波,可以消除高斯噪声,广泛应用于图像处理的减噪过程。高斯滤波就是对整幅图像进行加权平均的过程,每一个像素点的值,都由其本身和邻域内的其他像素值经过 加权平均 后得到。高斯滤波的具体操作是:用一个模板(或称卷积、掩模)扫描图像中的每一个像素,用模板确定的邻域内像素的加权平均灰度值去替代模板中心像素点的值。
高斯滤波有用但是效率不高。
高斯模糊技术生成的图像,其视觉效果就像是经过一个半透明屏幕在观察图像,这与镜头焦外成像效果散景以及普通照明阴影中的效果都明显不同。高斯平滑也用于计算机视觉算法中的预先处理阶段,以增强图像在不同比例大小下的图像效果(参见尺度空间表示以及尺度空间实现)。从数学的角度来看,图像的高斯模糊过程就是图像与正态分布做卷积。由于正态分布又叫作高斯分布,所以这项技术就叫作高斯模糊。
高斯滤波器是一类根据高斯函数的形状来选择权值的线性平滑滤波器。 高斯平滑滤波器对于抑制服从正态分布的噪声非常有效。
一维零均值高斯函数为: 高斯分布参数 决定了高斯函数的宽度。
高斯噪声的产生
GaussianBlur(src, ksize, sigmaX[, dst[, sigmaY[, borderType]]]) - dst
线性滤波容易构造,并且易于从频率响应的角度来进行分析。
许多情况,使用近邻像素的非线性滤波会得到更好的结果。比如在噪声是散粒噪声而不是高斯噪声,即图像偶尔会出现很大值的时候,用高斯滤波器进行图像模糊时,噪声像素不会被消除,而是转化为更为柔和但仍然可见的散粒。
中值滤波(Median filter)是一种典型的非线性滤波技术,基本思想是用像素点邻域灰度值的中值来代替该像素点的灰度值,该方法在去除脉冲噪声、椒盐噪声『椒盐噪声又称脉冲噪声,它随机改变一些像素值,是由图像传感器,传输信道,解码处理等产生的黑白相间的亮暗点噪声。椒盐噪声往往由图像切割引起。』的同时又能保留图像边缘细节,
中值滤波是基于排序统计理论的一种能有效抑制噪声的非线性信号处理技术,其基本原理是把数字图像或数字序列中一点的值用该点的一个邻域中各点值的中值代替,让周围的像素值接近的真实值,从而消除孤立的噪声点,对于 斑点噪声(speckle noise)和椒盐噪声(salt-and-pepper noise) 来说尤其有用,因为它不依赖于邻域内那些与典型值差别很大的值。中值滤波器在处理连续图像窗函数时与线性滤波器的工作方式类似,但滤波过程却不再是加权运算。
中值滤波在一定的条件下可以克服常见线性滤波器如最小均方滤波、方框滤波器、均值滤波等带来的图像细节模糊,而且对滤除脉冲干扰及图像扫描噪声非常有效,也常用于保护边缘信息, 保存边缘的特性使它在不希望出现边缘模糊的场合也很有用,是非常经典的平滑噪声处理方法。
与均值滤波比较:
说明:中值滤波在一定条件下,可以克服线性滤波器(如均值滤波等)所带来的图像细节模糊,而且对滤除脉冲干扰即图像扫描噪声最为有效。在实际运算过程中并不需要图像的统计特性,也给计算带来不少方便。 但是对一些细节多,特别是线、尖顶等细节多的图像不宜采用中值滤波。
双边滤波(Bilateral filter)是一种非线性的滤波方法,是结合 图像的空间邻近度和像素值相似度 的一种折衷处理,同时考虑空域信息和灰度相似性,达到保边去噪的目的。具有简单、非迭代、局部的特点。
双边滤波器的好处是可以做边缘保存(edge preserving),一般过去用的维纳滤波或者高斯滤波去降噪,都会较明显地模糊边缘,对于高频细节的保护效果并不明显。双边滤波器顾名思义比高斯滤波多了一个高斯方差 sigma-d ,它是基于空间分布的高斯滤波函数,所以在边缘附近,离的较远的像素不会太多影响到边缘上的像素值,这样就保证了边缘附近像素值的保存。 但是由于保存了过多的高频信息,对于彩色图像里的高频噪声,双边滤波器不能够干净的滤掉,只能够对于低频信息进行较好的滤波。
运行结果
学习目标:
形态变换是基于图像形状的一些简单操作。它通常在二进制图像上执行。
膨胀与腐蚀实现的功能
侵蚀的基本思想就像土壤侵蚀一样,它会侵蚀前景物体的边界(总是试图保持前景为白色)。那它是做什么的?内核在图像中滑动(如在2D卷积中)。只有当内核下的所有像素都是 1 时,原始图像中的像素( 1 或 0 )才会被视为 1 ,否则它将被侵蚀(变为零)
erode(src, kernel[, dst[, anchor[, iterations[, borderType[, borderValue]]]]]) - dst
与腐蚀的操作相反。如果内核下的至少一个像素为“1”,则像素元素为“1”。因此它增加了图像中的白色区域或前景对象的大小增加。通常,在去除噪音的情况下,侵蚀之后是扩张。因为,侵蚀会消除白噪声,但它也会缩小我们的物体。所以我们扩大它。由于噪音消失了,它们不会再回来,但我们的物体区域会增加。它也可用于连接对象的破碎部分
统计学入门级:常见概率分布+python绘制分布图
如果随机变量X的所有取值都可以逐个列举出来,则称X为离散型随机变量。相应的概率分布有二项分布,泊松分布。
如果随机变量X的所有取值无法逐个列举出来,而是取数轴上某一区间内的任一点,则称X为连续型随机变量。相应的概率分布有正态分布,均匀分布,指数分布,伽马分布,偏态分布,卡方分布,beta分布等。(真多分布,好恐怖~~)
在离散型随机变量X的一切可能值中,各可能值与其对应概率的乘积之和称为该随机变量X的期望值,记作E(X) 。比如有随机变量,取值依次为:2,2,2,4,5。求其平均值:(2+2+2+4+5)/5 = 3。
期望值也就是该随机变量总体的均值。 推导过程如下:
= (2+2+2+4+5)/5
= 1/5 2 3 + 4/5 + 5/5
= 3/5 2 + 1/5 4 + 1/5 5
= 0.6 2 + 0.2 4 + 0.2 5
= 60% 2 + 20% 4 + 20%*5
= 1.2 + 0.8 + 1
= 3
倒数第三步可以解释为值为2的数字出现的概率为60%,4的概率为20%,5的概率为20%。 所以E(X) = 60% 2 + 20% 4 + 20%*5 = μ = 3。
0-1分布(两点分布),它的随机变量的取值为1或0。即离散型随机变量X的概率分布为:P{X=0} = 1-p, P{X=1} = p,即:
则称随机变量X服从参数为p的0-1分布,记作X~B(1,p)。
在生活中有很多例子服从两点分布,比如投资是否中标,新生婴儿是男孩还是女孩,检查产品是否合格等等。
大家非常熟悉的抛硬币试验对应的分布就是二项分布。抛硬币试验要么出现正面,要么就是反面,只包含这两个结果。出现正面的次数是一个随机变量,这种随机变量所服从的概率分布通常称为 二项分布 。
像抛硬币这类试验所具有的共同性质总结如下:(以抛硬币为例)
通常称具有上述特征的n次重复独立试验为n重伯努利试验。简称伯努利试验或伯努利试验概型。特别地,当试验次数为1时,二项分布服从0-1分布(两点分布)。
举个栗子:抛3次均匀的硬币,求结果出现有2个正面的概率 。
已知p = 0.5 (出现正面的概率) ,n = 3 ,k = 2
所以抛3次均匀的硬币,求结果出现有2个正面的概率为3/8。
二项分布的期望值和方差 分别为:
泊松分布是用来描述在一 指定时间范围内或在指定的面积或体积之内某一事件出现的次数的分布 。生活中服从泊松分布的例子比如有每天房产中介接待的客户数,某微博每月出现服务器瘫痪的次数等等。 泊松分布的公式为 :
其中 λ 为给定的时间间隔内事件的平均数,λ = np。e为一个数学常数,一个无限不循环小数,其值约为2.71828。
泊松分布的期望值和方差 分别为:
使用Python绘制泊松分布的概率分布图:
因为连续型随机变量可以取某一区间或整个实数轴上的任意一个值,所以通常用一个函数f(x)来表示连续型随机变量,而f(x)就称为 概率密度函数 。
概率密度函数f(x)具有如下性质 :
需要注意的是,f(x)不是一个概率,即f(x) ≠ P(X = x) 。在连续分布的情况下,随机变量X在a与b之间的概率可以写成:
正态分布(或高斯分布)是连续型随机变量的最重要也是最常见的分布,比如学生的考试成绩就呈现出正态分布的特征,大部分成绩集中在某个范围(比如60-80分),很小一部分往两端倾斜(比如50分以下和90多分以上)。还有人的身高等等。
正态分布的定义 :
如果随机变量X的概率密度为( -∞x+∞):
则称X服从正态分布,记作X~N(μ,σ²)。其中-∞μ+∞,σ0, μ为随机变量X的均值,σ为随机变量X的标准差。 正态分布的分布函数
正态分布的图形特点 :
使用Python绘制正态分布的概率分布图:
正态分布有一个3σ准则,即数值分布在(μ-σ,μ+σ)中的概率为0.6827,分布在(μ-2σ,μ+2σ)中的概率为0.9545,分布在(μ-3σ,μ+3σ)中的概率为0.9973,也就是说大部分数值是分布在(μ-3σ,μ+3σ)区间内,超出这个范围的可能性很小很小,仅占不到0.3%,属于极个别的小概率事件,所以3σ准则可以用来检测异常值。
当μ=0,σ=1时,有
此时的正态分布N(0,1) 称为标准正态分布。因为μ,σ都是确定的取值,所以其对应的概率密度曲线是一条 形态固定 的曲线。
对标准正态分布,通常用φ(x)表示概率密度函数,用Φ(x)表示分布函数:
假设有一次物理考试特别难,满分100分,全班只有大概20个人及格。与此同时语文考试很简单,全班绝大部分都考了90分以上。小明的物理和语文分别考了60分和80分,他回家后告诉家长,这时家长能仅仅从两科科目的分值直接判断出这次小明的语文成绩要比物理好很多吗?如果不能,应该如何判断呢?此时Z-score就派上用场了。 Z-Score的计算定义 :
即 将随机变量X先减去总体样本均值,再除以总体样本标准差就得到标准分数啦。如果X低于平均值,则Z为负数,反之为正数 。通过计算标准分数,可以将任何一个一般的正态分布转化为标准正态分布。
小明家长从老师那得知物理的全班平均成绩为40分,标准差为10,而语文的平均成绩为92分,标准差为4。分别计算两科成绩的标准分数:
物理:标准分数 = (60-40)/10 = 2
语文:标准分数 = (85-95)/4 = -2.5
从计算结果来看,说明这次考试小明的物理成绩在全部同学中算是考得很不错的,而语文考得很差。
指数分布可能容易和前面的泊松分布混淆,泊松分布强调的是某段时间内随机事件发生的次数的概率分布,而指数分布说的是 随机事件发生的时间间隔 的概率分布。比如一班地铁进站的间隔时间。如果随机变量X的概率密度为:
则称X服从指数分布,其中的参数λ0。 对应的分布函数 为:
均匀分布的期望值和方差 分别为:
使用Python绘制指数分布的概率分布图:
均匀分布有两种,分为 离散型均匀分布和连续型均匀分布 。其中离散型均匀分布最常见的例子就是抛掷骰子啦。抛掷骰子出现的点数就是一个离散型随机变量,点数可能有1,2,3,4,5,6。每个数出现的概率都是1/6。
设连续型随机变量X具有概率密度函数:
则称X服从区间(a,b)上的均匀分布。X在等长度的子区间内取值的概率相同。对应的分布函数为:
f(x)和F(x)的图形分别如下图所示:
均匀分布的期望值和方差 分别为:
网站栏目:包含python写高斯函数的词条
转载源于:http://myzitong.com/article/dooieoi.html