包含python函数方式的词条

一文秒懂python正则表达式常用函数

01 Re概览

创新互联建站长期为1000+客户提供的网站建设服务,团队从业经验10年,关注不同地域、不同群体,并针对不同对象提供差异化的产品和服务;打造开放共赢平台,与合作伙伴共同营造健康的互联网生态环境。为岳塘企业提供专业的成都网站制作、网站建设,岳塘网站改版等技术服务。拥有10多年丰富建站经验和众多成功案例,为您定制开发。

Re模块是python的内置模块,提供了正则表达式在python中的所有用法,默认安装位置在python根目录下的Lib文件夹(如 ..\Python\Python37\Lib)。主要提供了3大类字符串操作方法:

字符查找/匹配

字符替换

字符分割

由于是面向字符串类型的模块,就不得不提到字符串编码类型。re模块中,模式串和搜索串既可以是 Unicode 字符串 (常用str类型) ,也可以是8位字节串 (bytes,2位16进制数字,例如\xe5) , 但要求二者必须是同类型字符串。

02 字符串查找/匹配

预编译:compile

在介绍查找和匹配函数前,首先需要知道re的compile函数,该函数可以将一个模式串编译成正则表达式类型,以便后续快速匹配和复用

import re pattern = re.compile(r'[a-z]{2,5}') type(pattern) #re.Pattern

此例创建了一个正则表达式式对象 (re.pattern) ,命名为pattern,用于匹配2-5位小写字母的模式串。后续在使用其他正则表达式函数时,即可使用pattern进行方法调用。

匹配:match

match函数用于从文本串的起始位置开始匹配,若匹配成功,则返回相应的匹配对象,此时可调用group()方法返回匹配结果,也可用span()方法返回匹配起止下标区间;否则返回None

import re pattern = re.compile(r'[a-z]{2,5}') text1 = 'this is a re test' res = pattern.match(text1) print(res) # if res:  print(res.group()) #this  print(res.span()) #(0, 4) text2 = '是的, this is a re test' print(pattern.match(text2))#None

match函数还有一个变形函数fullmatch,当且仅当模式串与文本串刚好全部匹配时,返回一个匹配对象,否则返回None

搜索:search

match只提供了从文本串起始位置匹配的结果,如果想从任意位置匹配,则可调用search方法,与match方法类似,当任意位置匹配成功,则立即返回一个匹配对象,也可调用span()方法获取起止区间、调用group方法获得匹配文本串

import re pattern = re.compile(r'\s[a-z]{2}') text1 = 'this is a re test' res = pattern.search(text1) print(res) # if res:  print(res.group()) #is  print(res.span()) #(4, 7) pattern2 = re.compile(r'\s[a-z]{5}') text2 = '是的,this is a re test' print(pattern2.search(text2))#None

match和search均用于匹配单个结果,唯一区别在于前者是从起始位置开始匹配,而后者从任意位置匹配,匹配成功则返回一个match对象。

全搜索:findall/finditer

几乎是最常用的正则表达式函数,用于寻找所有匹配的结果,例如在爬虫信息提取中,可非常方便地提取所有匹配字段

import re pattern = re.compile(r'\s[a-z]{2,5}') text1 = 'this is a re test' res = pattern.findall(text1) print(res) #[' is', ' re', ' test']

findall返回的是一个列表对象类型,当无匹配对象时,返回一个空列表。为了避免因同时返回大量匹配结果占用过多内存,可以调用finditer函数返回一个迭代器类型,其中每个迭代元素是一个match对象,可继续调用group和span方法获取相应结果

import re pattern = re.compile(r'\s[a-z]{2,5}') text1 = 'this is a re test' res = pattern.finditer(text1) for r in res:  print(r.group()) """  is  re  test """

当匹配模式串较为简单或者仅需单词调用时,上述所有方法也可直接调用re类函数,而无需事先编译。此时各方法的第一个参数为模式串。

import re pattern = re.compile(r'\d{2,5}') text = 'this is re test' re.findall('[a-z]+', text) #['this', 'is', 're', 'test'] 03 字符串替换/分割

替换:sub/subn

当需要对文本串进行条件替换时,可调用re.sub实现 (当然也可先编译后再用调用实例方法) ,相应参数分别为模式串、替换格式、文本串,还可以通过增加缺省参数限定替换次数和匹配模式。通过在模式串进行分组,可实现字符串的格式化替换(类似字符串的format方法),以实现特定任务。

import re text = 'today is 2020-03-05' print(re.sub('-', '', text)) #'today is 20200305' print(re.sub('-', '', text, 1)) #'today is 202003-05' print(re.sub('(\d{4})-(\d{2})-(\d{2})', r'\2/\3/\1', text)) #'today is 03/05/2020'

re.sub的一个变形方法是re.subn,区别是返回一个2元素的元组,其中第一个元素为替换结果,第二个为替换次数

import re text = 'today is 2020-03-05' print(re.subn('-', '', text)) #('today is 20200305', 2)

分割:split

还可以调用正则表达式实现字符串的特定分割,相当于.split()方法的一个加强版,实现特定模式的分割,返回一个切割后的结果列表

import re text = 'today is a re test, what do you mind?' print(re.split(',', text)) #['today is a re test', ' what do you mind?'] 04 总结

python中的re模块提供了正则表达式的常用方法,每种方法都包括类方法调用(如re.match)或模式串的实例调用(pattern.match)2种形式

常用的匹配函数:match/fullmatch

常用的搜索函数:search/findall/finditer

常用的替换函数:sub/subn

常用的切割函数:split

还有其他很多方法,但不是很常用,具体可参考官方文档

另外,python还有第三方正则表达式库regex可供选择

到此这篇关于一文秒懂python正则表达式常用函数的文章就介绍到这了,希望大家以后多多支持!

python字典操作函数

字典是一种通过名字或者关键字引用的得数据结构,其键可以是数字、字符串、元组,这种结构类型也称之为映射。字典类型是Python中唯一内建的映射类型,基本的操作包括如下:

(1)len():返回字典中键—值对的数量;

(2)d[k]:返回关键字对于的值;

(3)d[k]=v:将值关联到键值k上;

(4)del d[k]:删除键值为k的项;

(5)key in d:键值key是否在d中,是返回True,否则返回False。

(6)clear函数:清除字典中的所有项

(7)copy函数:返回一个具有相同键值的新字典;deepcopy()函数使用深复制,复制其包含所有的值,这个方法可以解决由于副本修改而使原始字典也变化的问题

(8)fromkeys函数:使用给定的键建立新的字典,键默认对应的值为None

(9)get函数:访问字典成员

(10)has_key函数:检查字典中是否含有给出的键

(11)items和iteritems函数:items将所有的字典项以列表方式返回,列表中项来自(键,值),iteritems与items作用相似,但是返回的是一个迭代器对象而不是列表

(12)keys和iterkeys:keys将字典中的键以列表形式返回,iterkeys返回键的迭代器

(13)pop函数:删除字典中对应的键

(14)popitem函数:移出字典中的项

(15)setdefault函数:类似于get方法,获取与给定键相关联的值,也可以在字典中不包含给定键的情况下设定相应的键值

(16)update函数:用一个字典更新另外一个字典

(17) values和itervalues函数:values以列表的形式返回字典中的值,itervalues返回值得迭代器,由于在字典中值不是唯一的,所以列表中可以包含重复的元素

一、字典的创建

1.1 直接创建字典

d={'one':1,'two':2,'three':3}

printd

printd['two']

printd['three']

运算结果:

=======RESTART: C:\Users\Mr_Deng\Desktop\test.py=======

{'three':3,'two':2,'one':1}

1.2 通过dict创建字典

# _*_ coding:utf-8 _*_

items=[('one',1),('two',2),('three',3),('four',4)]

printu'items中的内容:'

printitems

printu'利用dict创建字典,输出字典内容:'

d=dict(items)

printd

printu'查询字典中的内容:'

printd['one']

printd['three']

运算结果:

=======RESTART: C:\Users\Mr_Deng\Desktop\test.py=======

items中的内容:

[('one',1), ('two',2), ('three',3), ('four',4)]

利用dict创建字典,输出字典内容:

{'four':4,'three':3,'two':2,'one':1}

查询字典中的内容:

或者通过关键字创建字典

# _*_ coding:utf-8 _*_

d=dict(one=1,two=2,three=3)

printu'输出字典内容:'

printd

printu'查询字典中的内容:'

printd['one']

printd['three']

运算结果:

=======RESTART: C:\Users\Mr_Deng\Desktop\test.py=======

输出字典内容:

{'three':3,'two':2,'one':1}

查询字典中的内容:

二、字典的格式化字符串

# _*_ coding:utf-8 _*_

d={'one':1,'two':2,'three':3,'four':4}

printd

print"three is %(three)s."%d

运算结果:

=======RESTART: C:\Users\Mr_Deng\Desktop\test.py=======

{'four':4,'three':3,'two':2,'one':1}

threeis3.

三、字典方法

3.1 clear函数:清除字典中的所有项

# _*_ coding:utf-8 _*_

d={'one':1,'two':2,'three':3,'four':4}

printd

d.clear()

printd

运算结果:

=======RESTART: C:\Users\Mr_Deng\Desktop\test.py=======

{'four':4,'three':3,'two':2,'one':1}

{}

请看下面两个例子

3.1.1

# _*_ coding:utf-8 _*_

d={}

dd=d

d['one']=1

d['two']=2

printdd

d={}

printd

printdd

运算结果:

=======RESTART: C:\Users\Mr_Deng\Desktop\test.py=======

{'two':2,'one':1}

{}

{'two':2,'one':1}

3.1.2

# _*_ coding:utf-8 _*_

d={}

dd=d

d['one']=1

d['two']=2

printdd

d.clear()

printd

printdd

运算结果:

=======RESTART: C:\Users\Mr_Deng\Desktop\test.py=======

{'two':2,'one':1}

{}

{}

3.1.2与3.1.1唯一不同的是在对字典d的清空处理上,3.1.1将d关联到一个新的空字典上,这种方式对字典dd是没有影响的,所以在字典d被置空后,字典dd里面的值仍旧没有变化。但是在3.1.2中clear方法清空字典d中的内容,clear是一个原地操作的方法,使得d中的内容全部被置空,这样dd所指向的空间也被置空。

3.2 copy函数:返回一个具有相同键值的新字典

# _*_ coding:utf-8 _*_

x={'one':1,'two':2,'three':3,'test':['a','b','c']}

printu'初始X字典:'

printx

printu'X复制到Y:'

y=x.copy()

printu'Y字典:'

printy

y['three']=33

printu'修改Y中的值,观察输出:'

printy

printx

printu'删除Y中的值,观察输出'

y['test'].remove('c')

printy

printx

运算结果:

=======RESTART: C:\Users\Mr_Deng\Desktop\test.py=======

初始X字典:

{'test': ['a','b','c'],'three':3,'two':2,'one':1}

X复制到Y:

Y字典:

{'test': ['a','b','c'],'one':1,'three':3,'two':2}

修改Y中的值,观察输出:

{'test': ['a','b','c'],'one':1,'three':33,'two':2}

{'test': ['a','b','c'],'three':3,'two':2,'one':1}

删除Y中的值,观察输出

{'test': ['a','b'],'one':1,'three':33,'two':2}

{'test': ['a','b'],'three':3,'two':2,'one':1}

注:在复制的副本中对值进行替换后,对原来的字典不产生影响,但是如果修改了副本,原始的字典也会被修改。deepcopy函数使用深复制,复制其包含所有的值,这个方法可以解决由于副本修改而使原始字典也变化的问题。

# _*_ coding:utf-8 _*_

fromcopyimportdeepcopy

x={}

x['test']=['a','b','c','d']

y=x.copy()

z=deepcopy(x)

printu'输出:'

printy

printz

printu'修改后输出:'

x['test'].append('e')

printy

printz

运算输出:

=======RESTART: C:\Users\Mr_Deng\Desktop\test.py=======

输出:

{'test': ['a','b','c','d']}

{'test': ['a','b','c','d']}

修改后输出:

{'test': ['a','b','c','d','e']}

{'test': ['a','b','c','d']}

3.3 fromkeys函数:使用给定的键建立新的字典,键默认对应的值为None

# _*_ coding:utf-8 _*_

d=dict.fromkeys(['one','two','three'])

printd

运算输出:

=======RESTART: C:\Users\Mr_Deng\Desktop\test.py=======

{'three':None,'two':None,'one':None}

或者指定默认的对应值

# _*_ coding:utf-8 _*_

d=dict.fromkeys(['one','two','three'],'unknow')

printd

运算结果:

=======RESTART: C:\Users\Mr_Deng\Desktop\test.py=======

{'three':'unknow','two':'unknow','one':'unknow'}

3.4 get函数:访问字典成员

# _*_ coding:utf-8 _*_

d={'one':1,'two':2,'three':3}

printd

printd.get('one')

printd.get('four')

运算结果:

=======RESTART: C:\Users\Mr_Deng\Desktop\test.py=======

{'three':3,'two':2,'one':1}

1

None

注:get函数可以访问字典中不存在的键,当该键不存在是返回None

3.5 has_key函数:检查字典中是否含有给出的键

# _*_ coding:utf-8 _*_

d={'one':1,'two':2,'three':3}

printd

printd.has_key('one')

printd.has_key('four')

运算结果:

=======RESTART: C:\Users\Mr_Deng\Desktop\test.py=======

{'three':3,'two':2,'one':1}

True

False

3.6 items和iteritems函数:items将所有的字典项以列表方式返回,列表中项来自(键,值),iteritems与items作用相似,但是返回的是一个迭代器对象而不是列表

# _*_ coding:utf-8 _*_

d={'one':1,'two':2,'three':3}

printd

list=d.items()

forkey,valueinlist:

printkey,':',value

运算结果:

=======RESTART: C:\Users\Mr_Deng\Desktop\test.py=======

{'three':3,'two':2,'one':1}

three :3

two :2

one :1

# _*_ coding:utf-8 _*_

d={'one':1,'two':2,'three':3}

printd

it=d.iteritems()

fork,vinit:

print"d[%s]="%k,v

运算结果:

=======RESTART: C:\Users\Mr_Deng\Desktop\test.py=======

{'three':3,'two':2,'one':1}

d[three]=3

d[two]=2

d[one]=1

3.7 keys和iterkeys:keys将字典中的键以列表形式返回,iterkeys返回键的迭代器

# _*_ coding:utf-8 _*_

d={'one':1,'two':2,'three':3}

printd

printu'keys方法:'

list=d.keys()

printlist

printu'\niterkeys方法:'

it=d.iterkeys()

forxinit:

printx

运算结果:

=======RESTART: C:\Users\Mr_Deng\Desktop\test.py=======

{'three':3,'two':2,'one':1}

keys方法:

['three','two','one']

iterkeys方法:

three

two

one

3.8 pop函数:删除字典中对应的键

# _*_ coding:utf-8 _*_

d={'one':1,'two':2,'three':3}

printd

d.pop('one')

printd

运算结果:

=======RESTART: C:\Users\Mr_Deng\Desktop\test.py=======

{'three':3,'two':2,'one':1}

{'three':3,'two':2}

3.9 popitem函数:移出字典中的项

# _*_ coding:utf-8 _*_

d={'one':1,'two':2,'three':3}

printd

d.popitem()

printd

运算结果:

=======RESTART: C:\Users\Mr_Deng\Desktop\test.py=======

{'three':3,'two':2,'one':1}

{'two':2,'one':1}

3.10 setdefault函数:类似于get方法,获取与给定键相关联的值,也可以在字典中不包含给定键的情况下设定相应的键值

# _*_ coding:utf-8 _*_

d={'one':1,'two':2,'three':3}

printd

printd.setdefault('one',1)

printd.setdefault('four',4)

printd

运算结果:

{'three':3,'two':2,'one':1}

{'four':4,'three':3,'two':2,'one':1}

3.11 update函数:用一个字典更新另外一个字典

# _*_ coding:utf-8 _*_

d={

'one':123,

'two':2,

'three':3

}

printd

x={'one':1}

d.update(x)

printd

运算结果:

=======RESTART: C:\Users\Mr_Deng\Desktop\test.py=======

{'three':3,'two':2,'one':123}

{'three':3,'two':2,'one':1}

3.12 values和itervalues函数:values以列表的形式返回字典中的值,itervalues返回值得迭代器,由于在字典中值不是唯一的,所以列表中可以包含重复的元素

# _*_ coding:utf-8 _*_

d={

'one':123,

'two':2,

'three':3,

'test':2

}

printd.values()

运算结果:

=======RESTART: C:\Users\Mr_Deng\Desktop\test.py=======

[2,3,2,123]

Python的函数和参数

parameter 是函数定义的参数形式

argument 是函数调用时传入的参数实体。

对于函数调用的传参模式,一般有两种:

此外,

也是关键字传参

python的函数参数定义一般来说有五种: 位置和关键字参数混合 , 仅位置参数 , 仅关键字参数 , 可变位置参数 , 可变关键字参数 。其中仅位置参数的方式仅仅是一个概念,python语法中暂时没有这样的设计。

通常我们见到的函数是位置和关键字混合的方式。

既可以用关键字又可以用位置调用

这种方式的定义只能使用关键字传参的模式

f(*some_list) 与 f(arg1, arg2, ...) (其中some_list = [arg1, arg2, ...])是等价的

网络模块request的request方法的设计

多数的可选参数被设计成可变关键字参数

有多种方法能够为函数定义输出:

非常晦涩

如果使用可变对象作为函数的默认参数,会导致默认参数在所有的函数调用中被共享。

例子1:

addItem方法的data设计了一个默认参数,使用不当会造成默认参数被共享。

python里面,函数的默认参数被存在__default__属性中,这是一个元组类型

例子2:

在例子1中,默认参数是一个列表,它是mutable的数据类型,当它写进 __defauts__属性中时,函数addItem的操作并不会改变它的id,相当于 __defauts__只是保存了data的引用,对于它的内存数据并不关心,每次调用addItem,都可以修改 addItem.__defauts__中的数据,它是一个共享数据。

如果默认参数是一个imutable类型,情况将会不一样,你无法改变默认参数第一次存入的值。

例子1中,连续调用addItem('world') 的结果会是

而不是期望的

Python魔法函数(特殊函数)

Python中如何实现运算符的重载,即实现例如a+b这样的运算符操作呢?

在C++中可以使用 operator 关键字实现运算符的重载。但是在Python中没有类似这样的关键字,所以要实现运算符的重载,就要用到Python的魔法函数。Python魔法函数是以双下划线开头,双下划线结尾的一组函数。我们在类定义中最常用到的 __init__ 函数就是这样一个魔法函数,它在创建类对象时被自动调用。

下面我们来看个简单的例子。

上述代码示例了几个魔法函数的用法。 __add__ 函数对应了二元运算符+,当执行a+b语句时,python就会自动调用a. add (b)。 对于上述例子中的v1+v2+v3,则相当于调用了(v1. add(v2)). add(v3)。

代码中还有一个在Python类定义经常使用的 __str__ 函数,当使用 str() 时会被调用。print函数对传入的参数都调用了str()将其转换成易读的字符串形式,便于打印输出,因而会调用类定义的__str__函数打出自定义的字符串。

代码中还有一个特殊的 __call__ 函数,该函数在将对象采用函数调用方式使用时被调用, 例如v1()相当于v1. call ()。

以上就是魔法函数的基本使用方法。常见的魔法函数我们可以使用 dir() 函数来查看。

输出结果为:

上述结果中形式为‘__函数名__’的函数为魔法函数,注意有些对象也是这种形式,例如__class__, __module__等, 这些不是魔法函数。具体的魔法函数说明可以参考Python官方说明文档。

以上代码在Python3.6运行通过.


文章标题:包含python函数方式的词条
转载来于:http://myzitong.com/article/doophjc.html