nosql知识重点,NoSQL的三大基石?
如何使用nosql db
No SQL DB是一种和关系型数据库相对应的对象数据库。按照数据模型保存性质将当前NoSQL分为四种:
创新互联公司专注于企业网络营销推广、网站重做改版、庐山网站定制设计、自适应品牌网站建设、H5网站设计、商城建设、集团公司官网建设、成都外贸网站制作、高端网站制作、响应式网页设计等建站业务,价格优惠性价比高,为庐山等各大城市提供网站开发制作服务。
1.Key-value stores键值存储, 保存keys+BLOBs
2.Table-oriented 面向表, 主要有Google的BigTable和Cassandra.
3.Document-oriented面向文本, 文本是一种类似XML文档,MongoDB 和 CouchDB
4.Graph-oriented 面向图论. 如Neo4J.
关系型数据库的弊端:
关系型数据库的历史已经有30余年了,因此,在某些情况下,关系型数据库的弱点就会暴露出来:
1. “对象-关系 阻抗不匹配”。关系模型和面向对象模型在概念上存在天然的不匹配的地方,比如对象模型当中特有的“继承”,“组合”,“聚合”,“依赖”的概念在关系模型当中是不存在的。
2. “模式演进”。即随着时间的推移,需要对数据库模式进行调整以便适应新的需求,然而,对数据库模式的调整是的成本很高的动作,因此很多设计师在系统设计之初会设计一个兼容性很强的数据库模式,以应对将来可能出现的需求,然而在现在的web系统开发过程中,系统的变更更加频繁,几乎无法预先设计出一种“万能”的数据库模式以满足所有的需求,因此 模式演进的弊端就愈发凸显。
3. 关系型数据库处理 稀疏表时的性能非常差。
4. networkoriented data 很适合处理 人工智能、社交网络中的一些需求。
所以,各种各样的No SQL DB 出现了,这里只简单介绍下Neo4J 的基本知识。
Neo 数据模型
Neo4J 是一个基于图实现的No SQL DB, 其基本的数据类型有如下几种:
Node, Relationship, Property.
Node 对应于图中的 节点,Relationship 对应图中的边,Node 和 Relationship 都可以拥有Property,
Property 的数据结构为。
数据遍历
Neo 提供了Traverser对数据中的数据进行遍历。
python工程师需要掌握什么知识
1、Python基础与Linux数据库
技能达标要求:掌握Python基础语法,具备基础的编程能力;掌握Linux基本操作命令,掌握MySQL进阶内容。知识点包括Python基本语法规则及变量、逻辑控制、内置数据结构、文件操作、高级函数、模块、Python常用标准库模块、函数、异常处理、MySQL使用、协程等。
2、WEB全栈
技能达标要求:掌握WEB前端技术内容,掌握WEB后端框架,熟练使用Flask、Tornado、Django。涉及的知识点有HTML、CSS、JavaScript、jQuery、BootStrap、Web开发基础、VUE、Flask Views、Flask模板、数据库操作、Flask配置等。
3、数据分析+人工智能
技能达标要求:掌握爬虫、数据采集、数据机构与算法,掌握人工智能技术。涉及的知识点有数据抓取、数据提取、数据存储、爬虫并发、动态网页抓取、scrapy框架、分布式爬虫、爬虫攻防、数据结构、算法等。
4、高级进阶
技能达标要求:掌握自动化运维与区块链开发技术,具备自动化运维项目以及区块链项目经验。涉及的知识点有项目开发流程、部署、高并发、性能调优、Go语言基础、区块链入门等。
北大青鸟设计培训:Hbase知识点总结?
hbase概念: 非结构化的分布式的面向列存储非关系型的开源的数据库,根据谷歌的三大论文之一的bigtable 高宽厚表 作用: 为了解决大规模数据集合多重数据种类带来的挑战,尤其是大数据应用难题。
能干什么: 存储大量结果集数据,低延迟的随机查询。
sql: 结构化查询语言 nosql: 非关系型数据库,列存储和文档存储(查询低延迟),hbase是nosql的一个种类,其特点是列式存储。
非关系型数据库--列存储(hbase) 非关系型数据库--文档存储(MongoDB) 非关系型数据库--内存式存储(redis) 非关系型数据库--图形模型(graph) hive和hbase区别? Hive的定位是数据仓库,虽然也有增删改查,但其删改查对应的是整张表而不是单行数据,查询的延迟较高。
其本质是更加方便的使用mr的威力来进行离线分析的一个数据分析工具。
HBase的定位是hadoop的数据库,电脑培训发现是一个典型的Nosql,所以HBase是用来在大量数据中进行低延迟的随机查询的。
hbase运行方式: standalonedistrubited 单节点和伪分布式? 单节点:单独的进程运行在同一台机器上 hbase应用场景: 存储海量数据低延迟查询数据 hbase表由多行组成 hbase行一行在hbase中由行健和一个或多个列的值组成,按行健字母顺序排序的存储。
学大数据,需要学什么课程吗?兄弟请具体点。
IT时代逐渐开始向大数据DT时代迈进,很多企业和个人纷纷开始向大数据靠拢,希望在岗起步的道路上能占有一个属于自己的数据空间,迎接以后更激烈的竞争环境。企业向大数据靠拢的方法就是招揽一些大数据方面的人才,而个人向大数据靠拢的方式就是去学习大数据。想学习大数据的人越来越多,但是,大数据到底学的课程是什么呢?大数据学习的知识点都有哪些呢?下面给大家好好普及一下,这样学起来才会有的放矢。
首先我们要了解Java语言和Linux操作系统,这两个是学习大数据的基础,学习的顺序不分前后。
Java :只要了解一些基础即可,做大数据不需要很深的Java 技术,学java SE 就相当于有学习大数据。基础
Linux:因为大数据相关软件都是在Linux上运行的,所以Linux要学习的扎实一些,学好Linux对你快速掌握大数据相关技术会有很大的帮助,能让你更好的理解hadoop、hive、hbase、spark等大数据软件的运行环境和网络环境配置,能少踩很多坑,学会shell就能看懂脚本这样能更容易理解和配置大数据集群。还能让你对以后新出的大数据技术学习起来更快。
好说完基础了,再说说还需要学习哪些大数据技术,可以按我写的顺序学下去。
Hadoop:这是现在流行的大数据处理平台几乎已经成为大数据的代名词,所以这个是必学的。Hadoop里面包括几个组件HDFS、MapReduce和YARN,HDFS是存储数据的地方就像我们电脑的硬盘一样文件都存储在这个上面,MapReduce是对数据进行处理计算的,它有个特点就是不管多大的数据只要给它时间它就能把数据跑完,但是时间可能不是很快所以它叫数据的批处理。
记住学到这里可以作为你学大数据的一个节点。
Zookeeper:这是个万金油,安装Hadoop的HA的时候就会用到它,以后的Hbase也会用到它。它一般用来存放一些相互协作的信息,这些信息比较小一般不会超过1M,都是使用它的软件对它有依赖,对于我们个人来讲只需要把它安装正确,让它正常的run起来就可以了。
Mysql:我们学习完大数据的处理了,接下来学习学习小数据的处理工具mysql数据库,因为一会装hive的时候要用到,mysql需要掌握到什么层度那?你能在Linux上把它安装好,运行起来,会配置简单的权限,修改root的密码,创建数据库。这里主要的是学习SQL的语法,因为hive的语法和这个非常相似。
Sqoop:这个是用于把Mysql里的数据导入到Hadoop里的。当然你也可以不用这个,直接把Mysql数据表导出成文件再放到HDFS上也是一样的,当然生产环境中使用要注意Mysql的压力。
Hive:这个东西对于会SQL语法的来说就是神器,它能让你处理大数据变的很简单,不会再费劲的编写MapReduce程序。有的人说Pig那?它和Pig差不多掌握一个就可以了。
Oozie:既然学会Hive了,我相信你一定需要这个东西,它可以帮你管理你的Hive或者MapReduce、Spark脚本,还能检查你的程序是否执行正确,出错了给你发报警并能帮你重试程序,最重要的是还能帮你配置任务的依赖关系。我相信你一定会喜欢上它的,不然你看着那一大堆脚本,和密密麻麻的crond是不是有种想屎的感觉。
Hbase:这是Hadoop生态体系中的NOSQL数据库,他的数据是按照key和value的形式存储的并且key是唯一的,所以它能用来做数据的排重,它与MYSQL相比能存储的数据量大很多。所以他常被用于大数据处理完成之后的存储目的地。
Kafka:这是个比较好用的队列工具,队列是干吗的?排队买票你知道不?数据多了同样也需要排队处理,这样与你协作的其它同学不会叫起来,你干吗给我这么多的数据(比如好几百G的文件)我怎么处理得过来,你别怪他因为他不是搞大数据的,你可以跟他讲我把数据放在队列里你使用的时候一个个拿,这样他就不在抱怨了马上灰流流的去优化他的程序去了,因为处理不过来就是他的事情。而不是你给的问题。当然我们也可以利用这个工具来做线上实时数据的入库或入HDFS,这时你可以与一个叫Flume的工具配合使用,它是专门用来提供对数据进行简单处理,并写到各种数据接受方(比如Kafka)的。
Spark:它是用来弥补基于MapReduce处理数据速度上的缺点,它的特点是把数据装载到内存中计算而不是去读慢的要死进化还特别慢的硬盘。特别适合做迭代运算,所以算法流们特别稀饭它。它是用scala编写的。Java语言或者Scala都可以操作它,因为它们都是用JVM的。
网页标题:nosql知识重点,NoSQL的三大基石?
链接URL:http://myzitong.com/article/dscogjd.html