nosql运用场景,nosql应用实例
一、NoSQL数据库简介
Web1.0的时代,数据访问量很有限,用一夫当关的高性能的单点服务器可以解决大部分问题。
公司主营业务:成都网站建设、成都网站设计、移动网站开发等业务。帮助企业客户真正实现互联网宣传,提高企业的竞争能力。创新互联是一支青春激扬、勤奋敬业、活力青春激扬、勤奋敬业、活力澎湃、和谐高效的团队。公司秉承以“开放、自由、严谨、自律”为核心的企业文化,感谢他们对我们的高要求,感谢他们从不同领域给我们带来的挑战,让我们激情的团队有机会用头脑与智慧不断的给客户带来惊喜。创新互联推出横山免费做网站回馈大家。
随着Web2.0的时代的到来,用户访问量大幅度提升,同时产生了大量的用户数据。加上后来的智能移动设备的普及,所有的互联网平台都面临了巨大的性能挑战。
NoSQL(NoSQL = Not Only SQL ),意即“不仅仅是SQL”,泛指非关系型的数据库。
NoSQL 不依赖业务逻辑方式存储,而以简单的key-value模式存储。因此大大的增加了数据库的扩展能力。
Memcache Memcache Redis Redis MongoDB MongoDB 列式数据库 列式数据库 Hbase Hbase
HBase是Hadoop项目中的数据库。它用于需要对大量的数据进行随机、实时的读写操作的场景中。
HBase的目标就是处理数据量非常庞大的表,可以用普通的计算机处理超过10亿行数据,还可处理有数百万列元素的数据表。
Cassandra Cassandra
Apache Cassandra是一款免费的开源NoSQL数据库,其设计目的在于管理由大量商用服务器构建起来的庞大集群上的海量数据集(数据量通常达到PB级别)。在众多显著特性当中,Cassandra最为卓越的长处是对写入及读取操作进行规模调整,而且其不强调主集群的设计思路能够以相对直观的方式简化各集群的创建与扩展流程。
主要应用:社会关系,公共交通网络,地图及网络拓谱(n*(n-1)/2)
几种nosql的浅谈
1、性能
都比较高,性能对我们来说应该都不是瓶颈。
总体来讲,TPS 方面 redis 和 memcache 差不多,要大于 mongodb。
2、操作的便利性
memcache 数据结构单一。(key-value)
redis 丰富一些,数据操作方面,redis 更好一些,较少的网络 IO 次数,同时还提供 list,set,
hash 等数据结构的存储。
mongodb 支持丰富的数据表达,索引,最类似关系型数据库,支持的查询语言非常丰富。
3、内存空间的大小和数据量的大小
redis 在 2.0 版本后增加了自己的 VM 特性,突破物理内存的限制;可以对 key value 设置过
期时间(类似 memcache)
memcache 可以修改最大可用内存,采用 LRU 算法。Memcached 代理软件 magent,比如建立
10 台 4G 的 Memcache 集群,就相当于有了 40G。 magent -s 10.1.2.1 -s 10.1.2.2:11211 -b
10.1.2.3:14000 mongoDB 适合大数据量的存储,依赖操作系统 VM 做内存管理,吃内存也比较厉害,服务
不要和别的服务在一起。
4、可用性(单点问题)
对于单点问题,
redis,依赖客户端来实现分布式读写;主从复制时,每次从节点重新连接主节点都要依赖整
个快照,无增量复制,因性能和效率问题,
所以单点问题比较复杂;不支持自动 sharding,需要依赖程序设定一致 hash 机制。
一种替代方案是,不用 redis 本身的复制机制,采用自己做主动复制(多份存储),或者改成
增量复制的方式(需要自己实现),一致性问题和性能的权衡
Memcache 本身没有数据冗余机制,也没必要;对于故障预防,采用依赖成熟的 hash 或者环
状的算法,解决单点故障引起的抖动问题。
mongoDB 支持 master-slave,replicaset(内部采用 paxos 选举算法,自动故障恢复),auto sharding 机制,对客户端屏蔽了故障转移和切分机制。
5、可靠性(持久化)
对于数据持久化和数据恢复,
redis 支持(快照、AOF):依赖快照进行持久化,aof 增强了可靠性的同时,对性能有所影
响
memcache 不支持,通常用在做缓存,提升性能;
MongoDB 从 1.8 版本开始采用 binlog 方式支持持久化的可靠性
6、数据一致性(事务支持)
Memcache 在并发场景下,用 cas 保证一致性redis 事务支持比较弱,只能保证事务中的每个操作连续执行
mongoDB 不支持事务
7、数据分析
mongoDB 内置了数据分析的功能(mapreduce),其他不支持
8、应用场景
redis:数据量较小的更性能操作和运算上
memcache:用于在动态系统中减少数据库负载,提升性能;做缓存,提高性能(适合读多写
少,对于数据量比较大,可以采用 sharding)
MongoDB:主要解决海量数据的访问效率问题。
表格比较:
memcache redis 类型 内存数据库 内存数据库
数据类型 在定义 value 时就要固定数据类型 不需要
有字符串,链表,集 合和有序集合
虚拟内存 不支持 支持
过期策略 支持 支持
分布式 magent master-slave,一主一从或一主多从
存储数据安全 不支持 使用 save 存储到 dump.rdb 中
灾难恢复 不支持 append only file(aof)用于数据恢复
性能
1、类型——memcache 和 redis 都是将数据存放在内存,所以是内存数据库。当然,memcache 也可用于缓存其他东西,例如图片等等。
2、 数据类型——Memcache 在添加数据时就要指定数据的字节长度,而 redis 不需要。
3、 虚拟内存——当物理内存用完时,可以将一些很久没用到的 value 交换到磁盘。
4、 过期策略——memcache 在 set 时就指定,例如 set key1 0 0 8,即永不过期。Redis 可以通
过例如 expire 设定,例如 expire name 10。
5、 分布式——设定 memcache 集群,利用 magent 做一主多从;redis 可以做一主多从。都可
以一主一从。
6、 存储数据安全——memcache 断电就断了,数据没了;redis 可以定期 save 到磁盘。
7、 灾难恢复——memcache 同上,redis 丢了后可以通过 aof 恢复。
Memecache 端口 11211
yum -y install memcached
yum -y install php-pecl-memcache
/etc/init.d/memcached start memcached -d -p 11211 -u memcached -m 64 -c 1024 -P /var/run/memcached/memcached.pid
-d 启动一个守护进程
-p 端口
-m 分配的内存是 M
-c 最大运行并发数-P memcache 的 pid
//0 压缩(是否 MEMCACHE_COMPRESSED) 30 秒失效时间
//delete 5 是 timeout
nosql数据库的四种类型
一般将NoSQL数据库分为四大类:键值(Key-Value)存储数据库、列存储数据库、文档型数据库和图形(Graph)数据库。它们的数据模型、优缺点、典型应用场景。
键值(Key-Value)存储数据库Key指向Value的键值对,通常用hash表来实现查找速度快数据无结构化(通常只被当作字符串或者二进制数据)内容缓存,主要用于处理大量数据的高访问负载,也用于一些日志系统等。
列存储数据库,以列簇式存储,将同一列数据存在一起查找速度快,可扩展性强,更容易进行分布式扩展功能相对局限分布式的文件系统。
文档型数据库,Key-Value对应的键值对,Value为结构化数据,数据结构要求不严格,表结构可变(不需要像关系型数据库一样需预先定义表结构),查询性能不高,而且缺乏统一的查询语法,Web应用。
图形(Graph)数据库,图结构,利用图结构相关算法(如最短路径寻址,N度关系查找等),很多时候需要对整个图做计算才能得出需要的信息,而且这种结构不太好做分布式的集群方案,社交网络,推荐系统等。
NoSQL详解:如何找到对的技术
NoSQL,泛指非关系型的数据库。NoSQL数据库的产生就是为了解决大规模数据集合多重数据种类带来的挑战,尤其是大数据应用难题。
虽然关系型数据库系统RDBMS在安装和使用上仍然占有主要地位,但毋庸置疑,非关系型数据库NoSQL技术已经成为今天发展最快的数据库技术。
NoSQL详解:如何找到对的技术
NoSQL是对数据库系统的总称,在某种程度上,它的性能和用途可能完全不同。NoSQL一词最早产生于上世纪九十年代,意思是NoSQL(没有SQL语言),后来随着时间和技术的发展,SQL界面仍然作为处理数据的方式存在,所以NoSQL又有了新的诠释,即NotOnlySQL(不只是SQL语言)。今天,NoSQL数据库凭借着其非关系型、分布式、开源和横向扩展等优势,被认为是下一代数据库产品。
四种主要的NoSQL数据库和它们主要的应用场景
键值数据库:当数据以键的形式访问时,比如通过国际标准书号ISBN找一本书,键值数据库是最理想的。在这里,ISBN是键,书籍的其他信息就是值。必须知道键才能查询,不过值是一堆无意义的数据,读取之后必须经过翻译。
文档存储数据库:该数据库以文档的形式管理和存储数据。有点类似于键值数据库,但文档数据库中的数据有结构。与键值数据库中值是一堆无意义的数据不同,文档数据库中数据以文档的结构被描述,典型的是JavaScriptObjectNotation(JSON)或XML.文档存储数据库中的数据可以通过定义的任何模式进行查询,但键值数据库只能通过它的键进行查询。
常见NoSQL数据库的应用场景是怎么样的
NoSQL与关系型数据库设计理念比较关系型数据库中的表都是存储一些格式化的数据结构,每个元组字段的组成都一样,即使不是每个元组都需要所有的字段,但数据库会为每个元组分配所有的字段,这样的结构可以便于表与表之间进行连接等操作,但从另一个角度来说它也是关系型数据库性能瓶颈的一个因素。而非关系型数据库以键值对存储,它的结构不固定,每一个元组可以有不一样的字段,每个元组可以根据需要增加一些自己的键值对,这样就不会局限于固定的结构,可以减少一些时间和空间的开销。特点:它们可以处理超大量的数据。它们运行在便宜的PC服务器集群上。它们击碎了性能瓶颈。没有过多的操作。Bootstrap支持缺点:但是一些人承认,没有正式的官方支持,万一出了差错会是可怕的,至少很多管理人员是这样看。此外,nosql并未形成一定标准,各种产品层出不穷,内部混乱,各种项目还需时间来检验
本文标题:nosql运用场景,nosql应用实例
本文地址:http://myzitong.com/article/dsedich.html