nosql入门书籍,nosql理论基础
数据分析师适合看什么书
数据分析是一门专业且跨越多个领域的学科,我整理了数据分析师看的书,希望对你有所帮助:
十年的上杭网站建设经验,针对设计、前端、开发、售后、文案、推广等六对一服务,响应快,48小时及时工作处理。成都营销网站建设的优势是能够根据用户设备显示端的尺寸不同,自动调整上杭建站的显示方式,使网站能够适用不同显示终端,在浏览器中调整网站的宽度,无论在任何一种浏览器上浏览网站,都能展现优雅布局与设计,从而大程度地提升浏览体验。创新互联公司从事“上杭网站设计”,“上杭网站推广”以来,每个客户项目都认真落实执行。
数据分析师的必读书单:Excel
《谁说菜鸟不会数据分析》
知名度比较高的一套书,适合新手,优点是它和数据分析结合,而不是单纯地学习函数。学会函数适用的场景和过程比它本身更重要。
是否需要学习VBA是仁者见仁的答案。我个人不建议。Excel VBA的最大优势是适用性广,哪怕去其他行业其他职位,都离不开Excel,这时候它就是一个工作加分的亮点。但是在互联网行业,对数据分析师,VBA的性价比就不高了。
这里只推荐一本,因为我就翻过上面这本,还没全看…
数据分析师的必读书单:数据可视化
数据可视化的书不多。市面上多以编程为主,面向新手和设计的教程寥寥无几。 如果只是了解图表,看Excel的书籍也管用。
内容很丰富,涉及可视化的方方面面,也囊括更类编程语言和设计软件:Python+JS+R+Excel。作者还有另外一本书《数据之美》。
可视化是一门侧重灵感的学科,有一种入门技巧是从他人设计中学习,从模仿开始,了解他人是如何设计的,这个网络上有大量的信息图可以参考。当然数据分析师更需要的是如何发现,别只学习展示。
英文足够好,可以看Edward Tufte的著作:《The Visual Display of Quantitative Information》、《Envisioning Information》、《Beautiful Evidence》。他是数据可视化的领军人物,他的理念是反对为艺术效果而混淆或者简化数据。暂时没有中文版。
数据分析师的必读书单:分析思维
《金字塔原理》
分析思维首推《金字塔原理》,金字塔原理有些人说它晦涩难懂,我认为是芭芭拉这个老太有骗稿费之嫌,本书包含了报告、写文、演讲等诸多内容。可以细看可以快看。另外还有一本同名案例集,有兴趣可以买。
另外麦肯锡相关的书籍还有《麦肯锡意识》《麦肯锡工具》《麦肯锡方法》等。
《深入浅出数据分析》
深入浅出系列是对新手非常友好的丛书,用生动但啰嗦的语言讲解案例。厚厚的一本书翻起来很快。本书涉及的基础概念比较广,包含一点统计学知识,学下来对数据分析思维会有一个大概了解。
《精益数据分析》
国外的精益系列一直以互联网创业作内容导向,本书也属于此类。如果是互联网行业相关,可以看看。它介绍了不同领域的指标,以及产品不同时期的侧重点。案例都是欧美,这部分做参考用。
接下来的几本,是兴趣向读物。《黑天鹅》能拓展思维,讲叙了不确定性。《思考的技术》,大前研一的著作,也是咨询类经典。如果对咨询向的分析感兴趣,还可以看BCG系列,或者刷CaseBook。《批判性思维》,则是教你如何形成理性思维。
数据分析师的必读书单:SQL
数据库有很多种,常见有Oracle,MySQL,SQL Server等。我推荐学习MySQL,这是互联网公司的主流数据库。以后学习Hadoop生态时,MySQL也是最接近Hive语法的语言。
MySQL不需要专门看书学习,因为数据分析师以查询为主,不需要考虑数据性能、数据安全和架构的问题。使用搜索引擎能解决90%的问题,我就是w3cschool学的。
《MySQL必知必会》
如果真想买书看,可以看这本,适合新手向的学习,看基础概念和查询相关的章节即可。网络上大部分MySQL都是偏DBA的'。
如果想深入,可以看《高性能MySQL》,对分析师没啥用。至于另外一个方向NoSQL,对入门者还是小众了些。
如果有余力,就学习正则表达式吧,清洗数据的工作就靠它了。
数据分析师的必读书单:统计学
统计学是比较大的范围,分析师往后还需要学线性代数和矩阵、关系代数等。初学者不需要掌握所有公式定理的数学推导,懂得如何应用就行用。
《深入浅出统计学》
大概是最啰嗦的深入浅出系列,从卖橡皮鸭到赌博机的案例,囊括了常用的统计分析如假设检验、概率分布、描述统计、贝叶斯等。书本注重应用和趣味性,数学推理一般。
《商务与经济统计》
国外的经典教材,已经出到第十二版了。国外教材都有丰富有趣的案例,所以读起来会比国内的轻松不少。如果你还在读书,不妨买这本看一看。
名字既然有商务与经济,所以书中辅以了大量的相关案例。书内容很多,看起来不会快,适合细读。
《The Elements of Statistical Learning》
稍微有一些难度的英文书籍,属于进阶版统计学,国外很推崇。如果要往机器学习发展,这本书可以打下很好的基础。
以上书籍的难度是逐步递增的。统计学是机器学习的基础,是概率、矩阵等实际应用。现在已经有很多统计工具,Excel的分析工具库、传统行业的SPSS、SAS以及R、Python等,使用过程都不用计算推导,大学考试才会考,现在都是计算机解决,轻松不少。
数据分析师的必读书单:业务知识
不同领域的业务知识都不一样,这里以互联网举例。
《增长黑客》
增长黑客的概念就是随着这本书的畅销传播开来。增长黑客在国内即是数据分析+运营/产品的复合型人才。这本书好的地方在于拓展思路,告诉我们数据能够做什么,尤其是连AB测试都不清楚的新人。
实际涉及的业务知识不多,我推荐,是希望新人能够了解数据驱动的概念,这本算是我走上数据化运营的启蒙读物了。
《从零开始做运营》
知乎亮哥的书籍,互联网所有的数据都是和运营相关的,如果是新手,就以此学习业务知识。如果已经工作很多,就略过吧。
初学Web前端推荐什么书籍学习?
做前端开发9年,推荐你下看下面的6本书
《JavaScript DOM 编程艺术》
超级前端畅销书,作为前端程序员必读两遍以上的书籍,这本书籍特别适合初学前端的新人,前端的核心技术就是JavaScript,同时也是前端的难点。而这本书非常适合入门,通俗易懂,生动的案例可以让初学者更好的进行理解。所提及的很多编程思想却适合低中级层次的前端开发者学习。
《JavaScript权威指南》
同样是前端程序员必读的一本书籍,不仅适合初学者,还适合那些已经在做前端工作的程序员进行随时翻阅。里面涵盖了JavaScript的所有内容,以及web浏览器所实现的JavaScript
API。对于了解js的基础知识,比如对象,数组,语法,作用域,闭包等等都很有帮助。
《JavaScript 高级程序设计》
如果你想把JavaScript非常完全的系统学习一遍,我强烈推荐这本书,这本书可以一直保留,在用这本书的过程中还可以画下重点,以后可以作为参考,是工作中非常强力的帮手。面试的时候也可以很好的应用上,我们俗称的“红宝书”。
《你不知道的JavaScript》
这本书不适合前端的初学者,想要深入的了解JavaScript原理,这是每一个前端程序员必须要研究的一本书籍。要让不求甚解的JavaScript开发者迎难而上,深入语言内部,弄清楚JavaScript每一个零部件的用途。如果可以把这本书吃透,那么以后理解任何东西都可以很快的理解和掌握。
《Vue.js权威指南》
Vue作为现在前端的主流框架,在国内应用最为广泛,所以了解Vue原理必须要啃一本Vue的书籍。我之所以推荐这本,是因为这本书对于引导初用Vue的开发者有着质的提升。从基础知识到主流打包以及源码解析,还有很多实践的案例,都是一本不错的实用性书籍。主要内容包括数据绑定、指令、表单控件绑定、过滤器、组件、表单验证、服务通信、路由和视图、vue-cli、测试开发和调试、源码解析及主流打包构建工具等。该书内容全面,讲解细致,示例丰富,适用于各层次的开发者。
《编程之美》
无论是什么岗位的程序员,必读的一本书籍,没有读过这本书的程序员几乎都是假程序员。这本书有60道算法和程序设计题目,这些题目大部分在近年的笔试,面试中出现过,或者是被微软员工热烈讨论过。作者试图从书中各种有趣的问题出发,引导读者发现问题,分析问题,解决问题,寻找更优的解法。可以大幅度提高自己的编程思维和对于这个行业的深入思考,最终变成技术大牛。
如果不想买纸质版的书籍,到我的前端交流分享群进行下载PDF电子书。
常在这里回答问题,热爱技术,喜欢帮别人解答行业技术问题和行业知识。
如果大家对于学习前端有任何不懂的可以随时来问我,我给你提供一个非常不错的前端交流学习qun:前面是二九六,中间是二一二,后面是五六二。有问题就在里面问我,这样你可以少走很多弯路,做起来有效率,记得多跟有经验的人交流,别闭门造车。如果没有比较好的教程,也可以管我要。
你对此有什么见解,觉得小编推荐的这些前端书籍还靠谱吗?
评论区说出你的想法!
大数据入门书籍有哪些?
当年互联网疯狂发展的时候,很多人在观望和犹豫中错过了这班顺风车(没有尽早开个淘宝店,肠子都悔青了好几遍呢)。如今,同样的桥段上演,大数据时代,坚决不能再无动于衷!
于是,你着急,你迷茫,你很方……除了平时要加班加点的搬砖,牙缝里挤出来的的闲碎时间都贡献给度娘了,“小白如何学习大数据”,“大数据入门书籍有哪些”……
1:
这是学习大数据必读的一本书,也是最系统的关于大数据概念的一本书,由维克托·迈尔-舍恩伯格和肯尼斯·库克耶编写,主要介绍了大数据理念和生活工作及思维变革的关系。
它被包括宽带资本董事长田朔宁、知名IT评论人谢文等专业读者鉴定为“大数据领域最好的著作没有之一,一本顶一万本”。有这么好吗?看完自己评价吧。这本书对这个大规模产生、分享和应用数据的新的大时代进行了阐述和厘清,作者围绕“要全体不要抽样、要效率不要绝对精确、要相关不要因果”三大理念,通过数十个商业和学术案例,剖析了万事万物数据化和数据复用挖掘的巨大价值。
2:
由巴拉巴西编写,主要讲了在一个历史故事的连续讲述中,了解大数据的概念实质。从大数据的历史开始,能更深入的了解大数据的发展历程。
巴拉巴西整本书讲述的大数据根本目的,是预测。他甚至有零有整地判断,人类行为93%是可以预测的。打个比方,千百年前人类无法如今天般准确预测天气,以致某些大致预测的行为都被认为是“通神”,其实核心在于对天气数据的海量占有和分析能力。但假如全人类的所有基础及行为数据全部被占有全部能分析呢?比如通过智能终端LBS功能采集全部运动轨迹、通过金融系统采集所有支付记录、通过SNS采集所有社会关系和通过邮件、文档、社会视频监控和自我视频监测采集所有言行记录,24小时,每分每秒,一生,全地球70亿人,那会如何?
3:
由徐子沛编写,看美国政府在大数据开放上的进程与反复,算是个案。如果能够基本了解这三本的观点,出门有底气,见人腰杆直,不再被忽悠。
全书讲述的,是大数据在美国政府管理中的应用,以及美国政府运行方式大数据变革的历史与斗争,其实也是故事性的。从奥巴马上台就颁布《信息公开法案》,到设立第一个美国政府首席信息官开始,讲述美国政府与民间在社会数据公开的斗争史,以及美国社会管理向大数据思维转变的过程。首先,这算是一个最详实的案例;其次,这代表的不是某种管理方式变革,深处是对民主运行机制的变革与进步。说好了,这本书用心良苦,远远超越科普技术领域;说坏了,其心可诛。有一段,民间斗争,逼迫奥巴马公布所有每日白宫全部日程,包括接见了谁、谈话的全部内容,这不就是个人大数据全公开在公众人物上的应用吗?这可比现在所谓官员公开财产的要求高了几十倍——这要求政府全部行为、全部数据、全部公开,全体公众随时可查——技术和成本上其实已经可以做到或至少努力接近——如果不这么做,不止是落后问题而是真正的其心可诛了。
4:
由陈明编写。看名字就知道,入门级别拯救小白的书。这本书共17章,第1章是对大数据的简单概述,第2章介绍大数据研究的方法论,第3、8、9、14章介绍大数据的生态环境,第17章介绍数据科学的内容,剩下的章节是本书重点,介绍大数据技术及应用方法。
身处大数据大环境下,身边的人经常讨论数据库、数据可视化、大数据预处理等等。这些词听得多了会让人产生错觉——自己已经知道里面的门道了。但事实上还是个“门外汉”。
举个例子,没有人肯在上千人规模的讲座上专门花半个小时教你怎样进行数据清洗。本书专门列了一章,详细介绍大数据预处理技术,包括数据清洗的实现方式,从步骤到检验,都做了用心的阐述。诸如此类,数据挖掘、大数据流式计算、Hadoop、NoSQL等等都从最基础的点做了详细介绍。耐心看完这些,再往深处进阶就不会那么吃力了。
5:
进入大数据时代,让数据开口说话将成为司空见惯的事情,本书将从大数据时代的前因后果讲起,全面分析大数据时代的特征、企业实践的案例、大数据的发展方向、未来的机遇和挑战等内容,展现一个客观立体、自由开放的大数据时代。
5:
入门,浅显易懂,里面每一章都是一个案例,但是很方便,有具体的代码,用来入门最好。
6:
专门做社交网络的数据挖掘,案例很丰富,有代码。
7:
致力于介绍各种可视化方案。
8:
比较简单的可视化,不过内容丰富,有代码。
9:
看完上述的书,对大数据产生很大的兴趣,已经初步入门了,现在开始理论方面的学习,数据挖掘入门教程,个人觉得写的很好,目前正在研究这本书,努力。。。
10:
这本书比较深,刚开始看的就是这一本,不过太深,看到一半,准备在导论看完之后,在看这本书提升一下自己。
11:
作为一个计算机专业Linux那是必学的,而且Hadoop是建立在Linux基础上的,不求多么的精通,但是基础的操作要学会。
如果是没有任何编程语言基础的想入行大数据的话,是必须要学习java基础的,虽然大数据支持很多开发语言,但是企业用的最多的还是java,接下来学习数据结构,关系型数据库,linux系统操作,有了基础之后,在进入大数据学习,可以给小白学习的体系。
第一阶段
COREJAVA(加**的需重点熟练掌握,其他掌握)
Java基础**
数据类型
运算符、循环
算法
顺序结构程序设计
程序结构
数组及多维数组
面向对象**
构造方法、控制符、封装
继承**
多态**
抽象类、接口**
常用类
集合Collection、list**
HashSet、TreeSet、Collection
集合类Map**
异常
File
文件/流**
数据流和对象流**
线程(理解即可)
网络通信(理解即可)
第二阶段
数据结构
关系型数据库
Linux系统操作
Linux操作系统概述
安装Linux操作系统
图形界面操作基础
Linux字符界面基础
字符界面操作进阶
用户、组群和权限管理
文件系统管理
软件包管理与系统备份
Linux网络配置
(主要掌握Linux操作系统的理论基础和服务器配置实践知识,同时通过大量实验,着重培养学生的动手能力。使学生了解Linux操作系统在行业中的重要地位和广泛的使用范围。在学习Linux的基础上,加深对服务器操作系统的认识和实践配置能力。加深对计算机网络基础知识的理解,并在实践中加以应用。掌握Linux操作系统的安装、命令行操作、用户管理、磁盘管理、文件系统管理、软件包管理、进程管理、系统监测和系统故障排除。掌握Linux操作系统的网络配置、DNS、DHCP、HTTP、FTP、SMTP和POP3服务的配置与管理。为更深一步学习其它网络操作系统和软件系统开发奠定坚实的基础。与此同时,如果大家有时间把javaweb及框架学习一番,会让你的大数据学习更自由一些)
重点掌握:
常见算法
数据库表设计
SQL语句
Linux常见命令
第三阶段
Hadoop阶段
离线分析阶段
实时计算阶段
重点掌握:
Hadoop基础
HDFS
MapReduce
分布式集群
Hive
Hbase
Sqoop
Pig
Storm实时数据处理平台
Spark平台
若之前没有项目经验或JAVA基础,掌握了第一阶段进入企业,不足以立即上手做项目,企业需再花时间与成本培养;
第二阶段掌握扎实以后,进入企业就可以跟着做项目了,跟着一大帮人做项目倒也不用太担心自己能不能应付的来,当然薪资不能有太高的要求;
前两个阶段都服务于第三阶段的学习,除了熟练掌握这些知识以外,重点需要找些相应的项目去做,不管项目大小做过与没有相差很多的哦!掌握扎实后可直接面对企业就业,薪资待遇较高!
标题名称:nosql入门书籍,nosql理论基础
标题来源:http://myzitong.com/article/dsejeoj.html