mysql锁怎么使用,mysql锁怎么实现
mysql中的乐观锁和悲观锁怎么用
关于mysql中的乐观锁和悲观锁面试的时候被问到的概率还是比较大的。
成都创新互联服务项目包括孟连网站建设、孟连网站制作、孟连网页制作以及孟连网络营销策划等。多年来,我们专注于互联网行业,利用自身积累的技术优势、行业经验、深度合作伙伴关系等,向广大中小型企业、政府机构等提供互联网行业的解决方案,孟连网站推广取得了明显的社会效益与经济效益。目前,我们服务的客户以成都为中心已经辐射到孟连省份的部分城市,未来相信会继续扩大服务区域并继续获得客户的支持与信任!
mysql的悲观锁:
其实理解起来非常简单,当数据被外界修改持保守态度,包括自身系统当前的其他事务,以及来自外部系统的事务处理,因此,在整个数据处理过程中,将数据处于锁定状态。悲观锁的实现,往往依靠数据库提供的锁机制,但是也只有数据库层提供的锁机制才能真正保证数据访问的排他性,否则,即使在自身系统中实现了加锁机制,也无法保证外部系统不会修改数据。
来点实际的,当我们使用悲观锁的时候我们首先必须关闭mysql数据库的自动提交属性,因为MySQL默认使用autocommit模式,也就是说,当你执行一个更新操作后,MySQL会立刻将结果进行提交。
关闭命令为:set autocommit=0;
悲观锁可以使用select…for update实现,在执行的时候会锁定数据,虽然会锁定数据,但是不影响其他事务的普通查询使用。此处说普通查询就是平时我们用的:select * from table 语句。在我们使用悲观锁的时候事务中的语句例如:
//开始事务
begin;/begin work;/start transaction; (三选一)
//查询信息
select * from order where id=1 for update;
//修改信息
update order set name='names';
//提交事务
commit;/commit work;(二选一)
此处的查询语句for update关键字,在事务中只有SELECT ... FOR UPDATE 或LOCK IN SHARE MODE 同一条数据时会等待其它事务结束后才执行,一般的SELECT查询则不受影响。
执行事务时关键字select…for update会锁定数据,防止其他事务更改数据。但是锁定数据也是有规则的。
查询条件与锁定范围:
1、具体的主键值为查询条件
比如查询条件为主键ID=1等等,如果此条数据存在,则锁定当前行数据,如果不存在,则不锁定。
2、不具体的主键值为查询条件
比如查询条件为主键ID1等等,此时会锁定整张数据表。
3、查询条件中无主键
会锁定整张数据表。
4、如果查询条件中使用了索引为查询条件
明确指定索引并且查到,则锁定整条数据。如果找不到指定索引数据,则不加锁。
悲观锁的确保了数据的安全性,在数据被操作的时候锁定数据不被访问,但是这样会带来很大的性能问题。因此悲观锁在实际开发中使用是相对比较少的。
mysql的乐观锁:
相对悲观锁而言,乐观锁假设数据一般情况下不会造成冲突,所以在数据进行提交更新的时候,才会对数据的冲突与否进行检测,如果发现冲突,则让返回用户错误的信息,让用户决定如何去做。
一般来说,实现乐观锁的方法是在数据表中增加一个version字段,每当数据更新的时候这个字段执行加1操作。这样当数据更改的时候,另外一个事务访问此条数据进行更改的话就会操作失败,从而避免了并发操作错误。当然,还可以将version字段改为时间戳,不过原理都是一样的。
例如有表student,字段:
id,name,version
1 a 1
当事务一进行更新操作:update student set name='ygz' where id = #{id} and version = #{version};
此时操作完后数据会变为id = 1,name = ygz,version = 2,当另外一个事务二同样执行更新操作的时候,却发现version != 1,此时事务二就会操作失败,从而保证了数据的正确性。
悲观锁和乐观锁都是要根据具体业务来选择使用,本文仅作简单介绍。
一文详解-MySQL 事务和锁
当多个用户访问同一份数据时,一个用户在更改数据的过程中,可能有其他用户同时发起更改请求,为保证数据库记录的更新从一个一致性状态变为另外一个一致性状态,使用事务处理是非常必要的,事务具有以下四个特性:
MySQL 提供了多种事务型存储引擎,如 InnoDB 和 BDB 等,而 MyISAM 不支持事务。为了支持事务,InnoDB 存储引擎引入了与事务处理相关的 REDO 日志和 UNDO 日志,同时事务依赖于 MySQL 提供的锁机制
事务执行时需要将执行的事务日志写入日志文件,对应的文件为 REDO 日志。当每条 SQL 进行数据更新操作时,首先将 REDO 日志写进日志缓冲区。当客户端执行 COMMIT 命令提交时,日志缓冲区的内容将被刷新到磁盘,日志缓冲区的刷新方式或者时间间隔可以通过参数 innodb_flush_log_at_trx_commit 控制
REDO 日志对应磁盘上的 ib_logifleN 文件,该文件默认为 5MB,建议设置为 512MB,以便容纳较大的事务。MySQL 崩溃恢复时会重新执行 REDO 日志的记录,恢复最新数据,保证已提交事务的持久性
与 REDO 日志相反,UNDO 日志主要用于事务异常时的数据回滚,具体内容就是记录数据被修改前的信息到 UNDO 缓冲区,然后在合适的时间将内容刷新到磁盘
假如由于系统错误或者 rollback 操作而导致事务回滚,可以根据 undo 日志回滚到没修改前的状态,保证未提交事务的原子性
与 REDO 日志不同的是,磁盘上不存在单独的 UNDO 日志文件,所有的 UNDO 日志均存在表空间对应的 .ibd 数据文件中,即使 MySQL 服务启动了独立表空间
在 MySQL 中,可以使用 BEGIN 开始事务,使用 COMMIT 结束事务,中间可以使用 ROLLBACK 回滚事务。MySQL 通过 SET AUTOCOMMIT、START TRANSACTION、COMMIT 和 ROLLBACK 等语句支持本地事务
MySQL 定义了四种隔离级别,指定事务中哪些数据改变其他事务可见、哪些数据该表其他事务不可见。低级别的隔离级别可以支持更高的并发处理,同时占用的系统资源更少
InnoDB 系统级事务隔离级别可以使用以下语句设置:
查看系统级事务隔离级别:
InnoDB 会话级事务隔离级别可以使用以下语句设置:
查看会话级事务隔离级别:
在该隔离级别,所有事务都可以看到其他未提交事务的执行结果。读取未提交的数据称为脏读(Dirty Read),即是:首先开启 A 和 B 两个事务,在 B 事务更新但未提交之前,A 事务读取到了更新后的数据,但由于 B 事务回滚,导致 A 事务出现了脏读现象
所有事务只能看见已经提交事务所做的改变,此级别可以解决脏读,但也会导致不可重复读(Nonrepeatable Read):首先开启 A 和 B 两个事务,A事务读取了 B 事务的数据,在 B 事务更新并提交后,A 事务又读取到了更新后的数据,此时就出现了同一 A 事务中的查询出现了不同的查询结果
MySQL 默认的事务隔离级别,能确保同一事务的多个实例在并发读取数据时看到同样的数据行,理论上会导致一个问题,幻读(Phontom Read)。例如,第一个事务对一个表中的数据做了修改,这种修改会涉及表中的全部数据行,同时第二个事务也修改这个表中的数据,这次的修改是向表中插入一行新数据,此时就会发生操作第一个事务的用户发现表中还有没有修改的数据行
InnoDB 通过多版本并发控制机制(MVCC)解决了该问题:InnoDB 通过为每个数据行增加两个隐含值的方式来实现,这两个隐含值记录了行的创建时间、过期时间以及每一行存储时间发生时的系统版本号,每个查询根据事务的版本号来查询结果
通过强制事务排序,使其不可能相互冲突,从而解决幻读问题。简而言之,就是在每个读的数据行上加上共享锁实现,这个级别会导致大量的超时现象和锁竞争,一般不推荐使用
为了解决数据库并发控制问题,如走到同一时刻客户端对同一张表做更新或者查询操作,需要对并发操作进行控制,因此产生了锁
共享锁的粒度是行或者元组(多个行),一个事务获取了共享锁以后,可以对锁定范围内的数据执行读操作
排他锁的粒度与共享锁相同,一个事务获取排他锁以后,可以对锁定范围内的数据执行写操作
有两个事务 A 和 B,如果事务 A 获取了一个元组的共享锁,事务 B 还可以立即获取这个元组的共享锁,但不能获取这个元组的排他锁,必须等到事务 A 释放共享锁之后。如果事务 A 获取了一个元组的排他锁,事务 B 不能立即获取这个元组的共享锁,也不能立即获取这个元组的排他锁,必须等到 A 释放排他锁之后
意向锁是一种表锁,锁定的粒度是整张表,分为意向共享锁和意向排他锁。意向共享锁表示一个事务有意对数据上共享锁或者排他锁。有意表示事务想执行操作但还没真正执行
锁的粒度主要分为表锁和行锁
表锁的开销最小,同时允许的并发量也是最小。MyISAM 存储引擎使用该锁机制。当要写入数据时,整个表记录被锁,此时其他读/写动作一律等待。一些特定的动作,如 ALTER TABLE 执行时使用的也是表锁
行锁可以支持最大的并发,InnoDB 存储引擎使用该锁机制。如果要支持并发读/写,建议采用 InnoDB 存储引擎
面试你应该知道的 MySQL 的锁
背景
数据库的锁是在多线程高并发的情况下用来保证数据稳定性和一致性的一种机制。MySQL 根据底层存储引擎的不同,锁的支持粒度和实现机制也不同。MyISAM 只支持表锁,InnoDB 支持行锁和表锁。目前 MySQL 默认的存储引擎是 InnoDB,这里主要介绍 InnoDB 的锁。
使用 InnoDB 的两大优点:一是支持事务;二是支持行锁。
在高并发的情况下事务的并发处理会带来几个问题
由于高并发事务带来这几个问题,所以就产生了事务的隔离级别
举个例子
按照上面 1,2,3,4 的顺序执行会发现第 4 步被阻塞了,必须执行完第 5 步后才能插入成功。这里我们会很奇怪明明锁住的是uid=6 的这一行,为什么不能插入 5 呢?原因就是这里采用了 next-key 的算法,锁住的是(3,10)整个区间。感兴趣的可以试一下。
今天给大家分享了一下 MySQL 的 InnoDB 的事务以及锁的一些知识,通过自己的实际上手实践对这块更加熟悉了,希望大家在看的时候也可以动手试试,这样更能体会,理解的更深刻。
MySQL的锁分类以及使用场景
InnoDB默认是行级别的锁,当有明确指定的主键时候,是行级锁。否则是表级别。
例子: 假设表foods ,存在有id跟name、status三个字段,id是主键,status有索引。
例1: (明确指定主键,并且有此记录,行级锁)
例2: (明确指定主键/索引,若查无此记录,无锁)
例3: (无主键/索引,表级锁)
例4: (主键/索引不明确,表级锁)
for update的注意点
for update的疑问点
MySQL从入门到精通(九) MySQL锁,各种锁
锁是计算机协调多个进程或线程并发访问某一资源的机制,在数据库中,除传统的计算资源(CPU、RAM、I/O)争用外,数据也是一种供许多用户共享的资源,如何保证数据并发访问的一致性,有效性是所有数据库必须解决的一个问题,锁冲突也是影响数据库并发访问性能的一个重要因素,从这个角度来说,锁对数据库而言是尤其重要,也更加复杂。MySQL中的锁,按照锁的粒度分为:1、全局锁,就锁定数据库中的所有表。2、表级锁,每次操作锁住整张表。3、行级锁,每次操作锁住对应的行数据。
全局锁就是对整个数据库实例加锁,加锁后整个实例就处于只读状态,后续的DML的写语句,DDL语句,已经更新操作的事务提交语句都将阻塞。其典型的使用场景就是做全库的逻辑备份,对所有的表进行锁定,从而获取一致性视图,保证数据的完整性。但是对数据库加全局锁是有弊端的,如在主库上备份,那么在备份期间都不能执行更新,业务会受影响,第二如果是在从库上备份,那么在备份期间从库不能执行主库同步过来的二进制日志,会导致主从延迟。
解决办法是在innodb引擎中,备份时加上--single-transaction参数来完成不加锁的一致性数据备份。
添加全局锁: flush tables with read lock; 解锁 unlock tables。
表级锁,每次操作会锁住整张表.锁定粒度大,发送锁冲突的概率最高,并发读最低,应用在myisam、innodb、BOB等存储引擎中。表级锁分为: 表锁、元数据锁(meta data lock, MDL)和意向锁。
表锁又分为: 表共享读锁 read lock、表独占写锁write lock
语法: 1、加锁 lock tables 表名 ... read/write
2、释放锁 unlock tables 或者关闭客户端连接
注意: 读锁不会阻塞其它客户端的读,但是会阻塞其它客户端的写,写锁既会阻塞其它客户端的读,又会阻塞其它客户端的写。大家可以拿一张表来测试看看。
元数据锁,在加锁过程中是系统自动控制的,无需显示使用,在访问一张表的时候会自动加上,MDL锁主要作用是维护表元数据的数据一致性,在表上有活动事务的时候,不可以对元数据进行写入操作。为了避免DML和DDL冲突,保证读写的正确性。
在MySQL5.5中引入了MDL,当对一张表进行增删改查的时候,加MDL读锁(共享);当对表结构进行变更操作时,加MDL写锁(排他).
查看元数据锁:
select object_type,object_schema,object_name,lock_type,lock_duration from performance_schema_metadata_locks;
意向锁,为了避免DML在执行时,加的行锁与表锁的冲突,在innodb中引入了意向锁,使得表锁不用检查每行数据是否加锁,使用意向锁来减少表锁的检查。意向锁分为,意向共享锁is由语句select ... lock in share mode添加。意向排他锁ix,由insert,update,delete,select。。。for update 添加。
select object_schema,object_name,index_name,lock_type,lock_mode,lock_data from performance_schema.data_lock;
行级锁,每次操作锁住对应的行数据,锁定粒度最小,发生锁冲突的概率最高,并发读最高,应用在innodb存储引擎中。
innodb的数据是基于索引组织的,行锁是通过对索引上的索引项加锁来实现的,而不是对记录加的锁,对于行级锁,主要分为以下三类:
1、行锁或者叫record lock记录锁,锁定单个行记录的锁,防止其他事物对次行进行update和delete操作,在RC,RR隔离级别下都支持。
2、间隙锁Gap lock,锁定索引记录间隙(不含该记录),确保索引记录间隙不变,防止其他事物在这个间隙进行insert操作,产生幻读,在RR隔离级别下都支持。
3、临键锁Next-key-lock,行锁和间隙锁组合,同时锁住数据,并锁住数据前面的间隙Gap,在RR隔离级别下支持。
innodb实现了以下两种类型的行锁
1、共享锁 S: 允许一个事务去读一行,阻止其他事务获得相同数据集的排他锁。
2、排他锁 X: 允许获取排他锁的事务更新数据,阻止其他事务获得相同数据集的共享锁和排他锁。
insert 语句 排他锁 自动添加的
update语句 排他锁 自动添加
delete 语句 排他锁 自动添加
select 正常查询语句 不加锁 。。。
select 。。。lock in share mode 共享锁 需要手动在select 之后加lock in share mode
select 。。。for update 排他锁 需要手动在select之后添加for update
默认情况下,innodb在repeatable read事务隔离级别运行,innodb使用next-key锁进行搜索和索引扫描,以防止幻读。
间隙锁唯一目的是防止其它事务插入间隙,间隙锁可以共存,一个事务采用的间隙锁不会阻止另一个事务在同一间隙上采用的间隙锁。
MySQL白菜教程(Level 10 - 意向锁&记录锁&间隙锁)
意向锁(Intention Locks; table-level lock)
意向锁是一种特殊的表级锁,意向锁是为了让 InnoDB 多粒度的锁能共存而设计的。取得行的共享锁和排他锁之前需要先取得表的意向共享锁(IS)和意向排他锁(IX),意向共享锁和意向排他锁都是系统自动添加和自动释放的,整个过程无需人工干预
意向锁就是指未来的某一个时刻事务可能要加共享锁或者排它锁,提前声明一个意向,分为两种:
意向共享锁(Intention Shared Lock) IS
事务有意向对表中的某些行加共享锁(S锁)
意向排它锁(Intention Exclusive Lock)IX
事务有意向对表中的某些行加排他锁(X锁)
记录锁(Record Locks)
官方原文
SELECT c1 FROM t WHERE c1 = 10 FOR UPDATE; 这一行则是使用了记录锁,不允许其他事务进行增,删,改
但是 SELECT c1 FROM t WHERE c1 = 10; 是没有锁的,走的是快照读,上文已经阐明过了
记录锁本身不是锁定记录数据本身而是锁定索引记录,如果要锁的列没有索引,则会进行全表记录加锁
间隙锁(Gap Locks)
官方原文
比如 SELECT c1 FROM t WHERE c1 BETWEEN 10 and 20 FOR UPDATE ;
插入 c1 为 15 的记录会被锁定不可执行
这种默认存在于可重复读的事务隔离级别中的锁,锁定被圈定的范围不允许 insert,防止不可重复读,上文说了我们的事务隔离级别都是读已提交,默认会产生不可重复读的问题
本文标题:mysql锁怎么使用,mysql锁怎么实现
文章出自:http://myzitong.com/article/dsgohsg.html