SparkCheckPoint彻底解密(41)-创新互联
一、Checkpoint到底是什么?
创新互联专业为企业提供习水网站建设、习水做网站、习水网站设计、习水网站制作等企业网站建设、网页设计与制作、习水企业网站模板建站服务,10年习水做网站经验,不只是建网站,更提供有价值的思路和整体网络服务。1, Spark在生产环境下经常会面临Tranformations的RDD非常多(例如一个Job中包含1万个RDD)或者具体Tranformation产生的RDD本身计算特别复杂和耗时(例如计算时常超过1个小时),此时我们必须考虑对计算结果数据的持久化;
2, Spark是擅长多步骤迭代,同时擅长基于Job的复用,这个时候如果能够对曾经计算的过程产生的数据进行复用,就可以极大的提升效率;
3, 如果采用persist把数据放在内存中的话,虽然是最快速的但是也是最不可靠的;如果放在磁盘上也不是完全可靠的!例如磁盘会损坏。
4, Checkpoint的产生就是为了相对而言更加可靠的持久化数据,在Checkpoint可以指定把数据放在本地并且是多副本的方式,但是在正常的生产环境下是放在HDFS,这就天然的借助了HDFS高容错的高可靠的特征来完成了大化的可靠的持久化数据的方式;
5, Checkpoint是为了大程度保证绝度可靠的复用RDD计算数据的Spark的高级功能,通过Checkpoint我们通过把数据持久化的HDFS来保证数据大程度的安全性;
6, Checkpoint就是针对整个RDD计算链条中特别需要数据持久化的环节(后面会反复使用当前环节的RDD)开始基于HDFS等的数据持久化复用策略,通过对RDD启动checkpoint机制来实现容错和高可用;
二、Checkpoint原理机制
1, 通过调用SparkContext.setCheckpointDir方法来指定进行Checkpoint操作的RDD把数据放在哪里,在生产集群中是放在HDFS上的,同时为了提高效率在进行checkpoint的使用可以指定很多目录
2, 在进行RDD的checkpoint的时候其所依赖的所有的RDD都会从计算链条中清空掉;
3, 作为最佳实践,一般在进行checkpoint方法调用前通过都要进行persist来把当前RDD的数据持久化到内存或者磁盘上,这是因为checkpoint是Lazy级别,必须有Job的执行且在Job执行完成后才会从后往前回溯哪个RDD进行了Checkpoint标记,然后对该标记了要进行Checkpoint的RDD新启动一个Job执行具体的Checkpoint的过程;
4, Checkpoint改变了RDD的Lineage;
5, 当我们调用了checkpoint方法要对RDD进行Checkpoint操作的话,此时框架会自动生成RDDCheckpointData,当RDD上运行过一个Job后就会立即触发RDDCheckpointData中的checkpoint方法,在其内部会调用doCheckpoint,实际上在生产环境下会调用ReliableRDDCheckpointData的doCheckpoint,在生产环境下会导致ReliableCheckpointRDD的writeRDDToCheckpointDirectory的调用,而在writeRDDToCheckpointDirectory方法内部会触发runJob来执行把当前的RDD中的数据写到Checkpoint的目录中,同时会产生ReliableCheckpointRDD实例;
另外有需要云服务器可以了解下创新互联scvps.cn,海内外云服务器15元起步,三天无理由+7*72小时售后在线,公司持有idc许可证,提供“云服务器、裸金属服务器、高防服务器、香港服务器、美国服务器、虚拟主机、免备案服务器”等云主机租用服务以及企业上云的综合解决方案,具有“安全稳定、简单易用、服务可用性高、性价比高”等特点与优势,专为企业上云打造定制,能够满足用户丰富、多元化的应用场景需求。
网站栏目:SparkCheckPoint彻底解密(41)-创新互联
转载注明:http://myzitong.com/article/dshcoo.html