nosql如何做查询,nosql数据库使用更加方便
nosql 怎么用?在关系数据库中可以通过 select 语句查询,但是在nosql中怎么用这个了,难道只能存储键值对?
NoSQL数据库有很多种,实现方式差别很大。有接近SQL查询方式的,也有纯粹的键值对查询。
成都创新互联坚持“要么做到,要么别承诺”的工作理念,服务领域包括:网站设计制作、成都网站设计、企业官网、英文网站、手机端网站、网站推广等服务,满足客户于互联网时代的沽源网站设计、移动媒体设计的需求,帮助企业找到有效的互联网解决方案。努力成为您成熟可靠的网络建设合作伙伴!
对于K-V型数据库,比较典型的是Redis,系统提供了get、set之类的命令用于增删改查。关键是键值对的键和值怎么设计。
nosql数据库的四种类型
一般将NoSQL数据库分为四大类:键值(Key-Value)存储数据库、列存储数据库、文档型数据库和图形(Graph)数据库。它们的数据模型、优缺点、典型应用场景。
键值(Key-Value)存储数据库Key指向Value的键值对,通常用hash表来实现查找速度快数据无结构化(通常只被当作字符串或者二进制数据)内容缓存,主要用于处理大量数据的高访问负载,也用于一些日志系统等。
列存储数据库,以列簇式存储,将同一列数据存在一起查找速度快,可扩展性强,更容易进行分布式扩展功能相对局限分布式的文件系统。
文档型数据库,Key-Value对应的键值对,Value为结构化数据,数据结构要求不严格,表结构可变(不需要像关系型数据库一样需预先定义表结构),查询性能不高,而且缺乏统一的查询语法,Web应用。
图形(Graph)数据库,图结构,利用图结构相关算法(如最短路径寻址,N度关系查找等),很多时候需要对整个图做计算才能得出需要的信息,而且这种结构不太好做分布式的集群方案,社交网络,推荐系统等。
NoSql如何查询数据,除了可用SQL语言查,是否还可以用其他高级编程语言査?
每种nosql都有自己的语法。跟t-sql类数据库的方式类似。但。不是用sql语句。而是他自身定义的读取语句
NoSQL如何实现数据的增删改查?
package basic;
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException;
import java.sql.Statement;
public class JDBC {
public void findAll() {
try {
// 获得数据库驱动
//由于长时间不写,驱动名和URL都忘记了,不知道对不对,你应该知道的,自己改一下的哈
String url = "jdbc:oracle:thin:@localhost:1521:XE";
String userName = "system";
String password = "system";
Class.forName("oracle.jdbc.driver.OracleDriver");
// 创建连接
Connection conn = DriverManager.getConnection(url, userName,
password);
// 新建发送sql语句的对象
Statement st = conn.createStatement();
// 执行sql
String sql = "select * from users";
ResultSet rs = st.executeQuery(sql);
// 处理结果
while(rs.next()){
//这个地方就是给你的封装类属性赋值
System.out.println("UserName:"+rs.getString(0));
}
// 关闭连接
rs.close();
st.close();
conn.close();
} catch (ClassNotFoundException e) {
// TODO Auto-generated catch block
e.printStackTrace();
} catch (SQLException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
}
public void delete(){
try {
//步骤还是那六个步骤,前边的两步是一样的
String url = "jdbc:oracle:thin:@localhost:1521:XE";
String userName = "system";
String password = "system";
Class.forName("oracle.jdbc.driver.OracleDriver");
Connection conn = DriverManager.getConnection(url,userName,password);
//这里的发送sql语句的对象是PreparedStatement,成为预处理sql对象,因为按条件删除是需要不定值的
String sql = "delete from users where id = ?";
PreparedStatement ps = conn.prepareStatement(sql);
ps.setInt(0, 1);
int row = ps.executeUpdate();
if(row!=0){
System.out.println("删除成功!");
}
// 关闭连接
rs.close();
st.close();
conn.close();
} catch (ClassNotFoundException e) {
// TODO Auto-generated catch block
e.printStackTrace();
} catch (SQLException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
}
}
AWS开源可跨关联式与NoSQL数据库的查询语言PartiQL
AWS推出了与SQL兼容的查询语言PartiQL,只要数据库查询引擎提供PartiQL支持,使用者就能以PartiQL单一查询关联式数据库的结构化资料,以及开放资料格式中的巢状资料或是半结构化资料,甚至还能用来查询NoSQL或是文件数据库中无固定结构(Schema-less)的资料。除了AWS自家的数据库服务,NoSQL数据库Couchbase Server也承诺将会支持PartiQL。
企业资料分散在关联式数据库、非关联式数据库以及资料湖泊中。高度结构化的资料,储存在SQL数据库或是资料仓储;无固定结构的资料则由键值储存、图形数据库(Graph Database)、分类帐数据库或是时间序列数据库等NoSQL数据库处理;而在资料湖泊中的资料,可能也有部分缺乏结构,或是可能为巢状或是多值结构。不同的资料类型适用于不同的使用案例,而每种类型的资料,可能都有自己的查询语言。
不同的资料储存对应不同的查询语言,当企业更换资料格式或是数据库引擎时,可能还需要跟着改变应用程式和查询语法,AWS提到,这对于资料的应用,特别是使用资料湖泊的灵活性与效率,有着很大的阻碍。为了统一不同类型数据库存取方法,AWS发布了查询语言PartiQL,这是个与SQL兼容的查询语言,可以用来查询以各种格式储存在各地的资料。
用户可以使用PartiQL来查询关联式数据库,像是在Redshift实作交易或是资料分析等应用,或对于Amazon S3资料湖泊的开放资料格式,同样能使用PartiQL对巢状资料与半结构化资料例如Amazon Ion格式进行查询,另外,PartiQL也可用于文件数据库等NoSQL数据库,查询无固定结构的资料。
AWS表示,PartiQL的出现,是为了满足自家查询和转换大量资料的需求,其提供严格的SQL兼容性,可与标准SQL混合使用,执行连接(Join)、过滤(Filtering)与聚合(Aggregation)操作,并以最小扩充支持巢状和半结构化资料,让开发者以简单且一致的方法,不需要更改查询语言,就能查询各种格式和服务的资料。
PartiQL具格式独立性与储存独立性,PartiQL语法和语义不依赖任何资料格式,无论使用者是要查询JSON、Parquet、ORC、CSV还是Ion等格式,查询语句的写法都相同,PartiQL的查询在综合逻辑类型系统上运作,才对应到不同底层的格式。而PartiQL也不相依于特定资料储存,因此适用于不同的底层资料储存。
虽然过去针对跨不同类型数据库查询的问题,已有不少解决方案,AWS指出,像是Postgres JSON同样也兼容于SQL,但是却无法良好地处理JSON巢状资料;而半结构化查询语言,虽然能良好处理巢状资料,但却无法与SQL语言兼容。AWS提到,PartiQL是第一个能够完全解决这些问题的查询语言。
目前AWS已在自家多项服务支持PartiQL,包括Amazon S3 Select、Amazon Glacier Select、Amazon Redshift Spectrum、Amazon QLDB,接下来几个月将会有更多的AWS服务支持PartiQL,Couchbase也公布将加入支持PartiQL的行列。现在PartiQL以Apache2.0授权许可开源,公开教学、规范以及参考实作,所有社群都能使用并参与贡献。
网页名称:nosql如何做查询,nosql数据库使用更加方便
本文地址:http://myzitong.com/article/dsispis.html