Mysql怎么解决大数据,mysql怎么解决数据冗余
MySQL数据库千万级数据处理?
也就是A表中保留B表中存在的数据,可以通过筛选把这样的数据放在第三个表
创新互联建站专注于企业成都全网营销、网站重做改版、封丘网站定制设计、自适应品牌网站建设、H5开发、商城网站开发、集团公司官网建设、成都外贸网站建设公司、高端网站制作、响应式网页设计等建站业务,价格优惠性价比高,为封丘等各大城市提供网站开发制作服务。
只要索引合理,数据量不算大
祝好运,望采纳。
用MySQL管理大数据
By the end of this course,you will be able to
1.Describe the structure of relational databases,
2.Interpret and create entity relationship diagrams and relational schamas that describe the contents of specific criteria, and retrieve such data from MySQL an teradata databases that contain over one million rows of data.
3.Execute practices that limit the impact of your queries on other coworkers.
4. Summarize rows of data using aggregate function and segment aggregations according to specified variables.
5. Combine and manipulate data from multiple tables, across a database.
6.Retrieve records and compute calculations that are dependent on dynamic data features. And translate data analysis questions into SQL queries.
如何利用MySQL来处理大数据高并发请求网站?
大数据并发处理解决方案:
1、HTML静态化
效率最高、消耗最小的就是纯静态化的html页面,所以尽可能使网站上的页面采用静态页面来实现,这个最简单的方法其实也是最有效的方法。但是对于大量内容并且频繁更新的网站,无法全部手动去挨个实现,于是出现了常见的信息发布系统CMS,像常访问的各个门户站点的新闻频道,甚至他们的其他频道,都是通过信息发布系统来管理和实现的,信息发布系统可以实现最简单的信息录入自动生成静态页面,还能具备频道管理、权限管理、自动抓取等功能,对于一个大型网站来说,拥有一套高效、可管理的CMS是必不可少的。
2、图片服务器分离
对于Web服务器来说,不管是Apache、IIS还是其他容器,图片是最消耗资源的,于是有必要将图片与页面进行分离,这是基本上大型网站都会采用的策略,他们都有独立的图片服务器,甚至很多台图片服务器。这样的架构可以降低提供页面访问请求的服务器系统压力,并且可以保证系统不会因为图片问题而崩溃,在应用服务器和图片服务器上,可以进行不同的配置优化,比如apache在配置ContentType的时候可以尽量少支持,尽可能少的LoadModule,保证更高的系统消耗和执行效率。 这一实现起来是比较容易的一现,如果服务器集群操作起来更方便,如果是独立的服务器,新手可能出现上传图片只能在服务器本地的情况下,可以在令一台服务器设置的IIS采用网络路径来实现图片服务器,即不用改变程序,又能提高性能,但对于服务器本身的IO处理性能是没有任何的改变。
3、数据库集群和库表散列
大型网站都有复杂的应用,这些应用必须使用数据库,那么在面对大量访问的时候,数据库的瓶颈很快就能显现出来,这时一台数据库将很快无法满足应用,于是需要使用数据库集群或者库表散列。
4、缓存
缓存一词搞技术的都接触过,很多地方用到缓存。网站架构和网站开发中的缓存也是非常重要。架构方面的缓存,对Apache比较熟悉的人都能知道Apache提供了自己的缓存模块,也可以使用外加的Squid模块进行缓存,这两种方式均可以有效的提高Apache的访问响应能力。
网站程序开发方面的缓存,Linux上提供的Memory Cache是常用的缓存接口,可以在web开发中使用,比如用Java开发的时候就可以调用MemoryCache对一些数据进行缓存和通讯共享,一些大型社区使用了这样的架构。另外,在使用web语言开发的时候,各种语言基本都有自己的缓存模块和方法,PHP有Pear的Cache模块,Java就更多了,.net不是很熟悉,相信也肯定有。
5、镜像
镜像是大型网站常采用的提高性能和数据安全性的方式,镜像的技术可以解决不同网络接入商和地域带来的用户访问速度差异,比如ChinaNet和EduNet之间的差异就促使了很多网站在教育网内搭建镜像站点,数据进行定时更新或者实时更新。在镜像的细节技术方面,这里不阐述太深,有很多专业的现成的解决架构和产品可选。也有廉价的通过软件实现的思路,比如Linux上的rsync等工具。
6、负载均衡
负载均衡将是大型网站解决高负荷访问和大量并发请求采用的终极解决办法。 负载均衡技术发展了多年,有很多专业的服务提供商和产品可以选择。
硬件四层交换
第四层交换使用第三层和第四层信息包的报头信息,根据应用区间识别业务流,将整个区间段的业务流分配到合适的应用服务器进行处理。 第四层交换功能就象是虚IP,指向物理服务器。它传输的业务服从的协议多种多样,有HTTP、FTP、NFS、Telnet或其他协议。这些业务在物理服务器基础上,需要复杂的载量平衡算法。在IP世界,业务类型由终端TCP或UDP端口地址来决定,在第四层交换中的应用区间则由源端和终端IP地址、TCP和UDP端口共同决定。
在硬件四层交换产品领域,有一些知名的产品可以选择,比如Alteon、F5等,这些产品很昂贵,但是物有所值,能够提供非常优秀的性能和很灵活的管理能力。Yahoo中国当初接近2000台服务器使用了三四台Alteon就搞定了。
怎么对MySQL数据库操作大数据
我们经常会遇到操作一张大表,发现操作时间过长或影响在线业务了,想要回退大表操作的场景。在我们停止大表操作之后,等待回滚是一个很漫长的过程,尽管你可能对知道一些缩短时间的方法,处于对生产环境数据完整性的敬畏,也会选择不做介入。最终选择不作为的原因大多源于对操作影响的不确定性。实践出真知,下面针对两种主要提升事务回滚速度的方式进行验证,一种是提升操作可用内存空间,一种是通过停实例,禁用 redo 回滚方式进行进行验证。
仔细阅读过官方手册的同学,一定留意到了对于提升大事务回滚效率,官方提供了两种方法:一是增加 innodb_buffer_pool_size 参数大小,二是合理利用 innodb_force_recovery=3 参数,跳过事务回滚过程。第一种方式比较温和,innodb_buffer_pool_size 参数是可以动态调整的,可行性也较高。第二种方式相较之下较暴力,但效果较好。
两种方式各有自己的优点,第一种方式对线上业务系统影响较小,不会中断在线业务。第二种方式效果更显著,会短暂影响业务连续,回滚所有没有提交的事务。
数据库mysql中大数据量处理的问题
我最近刚整过和你类似的事情 呵呵。
你这个问题可以分成2个问题来解决
1.建立索引 首先把data_content_21.邮件, data_content_9.帐号建立索引。建立索引不会的话推荐你一个绿色工具 HAP_SQLyog_Enterprise_7.14网上自己去下很多的,然后登录进去以后选择你的表右键-》建立索引-》选上你要建立索引的字段就好了
2.mysql毕竟是轻量级数据库,如果数据超过100万条,建议你使用mysql的分表机制,需要mysql5.4.1以上的版本,分表机制在那个绿色工具里也有 自己试下吧
mysql 如何处理亿级数据
1、数据表 collect ( id, title ,info ,vtype) 就这4个字段,其中 title 用定长,info 用text, id 是逐渐,vtype是tinyint,vtype是索引。这是一个基本的新闻系统的简单模型。现在往里面填充数据,填充10万篇新闻。
2、最后collect 为 10万条记录,数据库表占用硬盘1.6G。OK ,看下面这条sql语句:select id,title from collect limit 1000,10; 很快;基本上0.01秒就OK,再看下面的select id,title from collect limit 90000,10; 从9万条开始分页。
3、8-9秒完成。
4、看下面一条语句:select id from collect order by id limit 90000,10; 很快,0.04秒就OK。因为用了id主键做索引当然快。
当前文章:Mysql怎么解决大数据,mysql怎么解决数据冗余
文章URL:http://myzitong.com/article/dsspgde.html