数据治理成功的六大要素-创新互联
过去的十年,银行的IT系统经历了数据量高速膨胀的时期,这些海量的、分散在不同角落的异构数据导致了数据资源的价值低、应用难度大等问题。同时,银行内部的业务条线或行政分化也在不断地制造着银行数据交互的断层,而银行与外部业务交互所产生的“体外循环”数据与企业的核心数据体系并不能自然地融合,这个时候数据治理体系建设可能不是银行的一个选择,而是唯一的出路。
数据治理规划
在长期对客户的商业智能项目的跟踪过程中我们发现,往往只有那些建立了一定的数据治理体系的客户,才能真正的将商业智能用起来,用户才能真正进入商业智能时代。这个问题在银行等金融机构内显得尤为突出,银行数据向来以量大质优而著称,但是实际情况是它比其他行业好一些,但是长期以来也缺乏数据治理的体系化建设,导致商业智能价值链受阻。要想在数字化转型中抓住机遇,银行的数据治理体系建设势在必行。
数据治理是一个系统工程,是一个从上至下指导,从下而上推进的工作。因此,在指导方面必须得到大家的共识,要有一个强有力的组织、合理的章程、明确的流程、健壮的系统,这样才能使数据治理工作得到有效的保障。
要素一:发展战略目标
战略是选择和决策的集合,共同绘制出一个高层次的行动方案,以实现更高层次目标。数据战略是企业发展战略中的重要组成部分,是数据管理计划的战略,是保持和提高数据质量、完整性、安全性和存取的计划,是指导数据治理的高原则。
数据治理是否与企业发展战略相吻合也是衡量数据治理体系实施是否成熟、是否成功的重要标准。要在企业发展战略框架下,建立数据治理的战略文化,包括企业高层领导对数据治理的重视程度、所能提供的资源、重大问题的协调能力,以及对数据治理文化的宣传推广、培训教育等一系列措施。这种整体统一的思想,和我们生态学模型下的帆软DA生态系统整体统一的特征如出一辙,充分证明了目标统一的必要性。
要素二:数据治理组织
数据治理的组织包括制度组织和服务组织。制度组织主要负责数据治理和数据管理制度。这些组织是跨职能的,通常商业银行会建立数据治理委员会、数据管理制度团队等组织,负责整体数据战略、数据政策、数据管理度量指标等数据治理规程问题。
比如大连银行成立了“数据管理办公室”,将其作为数据治理的执行机构;巴克莱银行还建立了数据管理的三层组织体系,包括决策层、管理层和执行层。与政府部门和机构一样,制度组织执行类似于行政部门的职责。数据服务组织主要是由数据管理的专业人员组成,包括数据架构师,数据质量分析师,元数据管理员等,主要执行数据治理各个领域的具体实施工作。
要素三:制度章程
制度章程是确保对数据治理进行有效实施的认责制度,其中一些是数据治理职能的职责,也包括其他数据管理职能的职责。数据治理是高层次的、规划性的数据管理制度活动。换句话说,数据治理是主要由数据管理人员和协调人员共同制定的高层次的数据管理制度决策。这里只简单的介绍包括哪些制度章程。
银行数据治理制度体系
典型的制度或规范领域
要素四:流程管理
流程管理包括流程目标、流程任务、流程分级。根据数据治理的内容,建立相应的流程,且遵循本单位数据治理的规章制度。实际操作中可结合所使用的数据治理工具,与数据治理工具供应商协商,建立符合商业银行的流程管理。
要素五:技术应用
要素六:成熟度模型
CMMI协会在2014年发布了数据管理能力成熟度模型Data Management Maturity(DMM),可以用来评估和提升企业的数据管理水平,帮助企业跨越业务与IT之间的鸿沟。DMM模型可以帮助企业在管理数据资产上达成共识。它包括了5个连续能力和25个提升的过程域,可以反映所有数据管理的内容,可以促进企业建立自己的数据管理成熟度路线图。
数据管理能力成熟度模型
总结
我国银行的数据现状普遍都是一个先污染、后治理的过程,数据治理必然带来新的标准的确立和旧系统的改造,是一个有破有立、无破不立的过程。这一过程设计大量的跨部门、跨条线、跨系统的沟通协调,同时也涉及不小的投资。为了不使投入的人力物力付之东流,在治理前期就应该规划好各项规章制度和管理架构,保障后续的各项治理工作能够行之有效并且长期坚持。
互联互通社区
互联互通社区专注于IT互联网交流与学习,关注公众号:互联互通社区,每日获取最新报告并附带专题内容辅助学习。方案打造与宣讲、架构设计与执行、技术攻坚与培训、数据中台等技术咨询与服务合作请+微信:hulianhutongshequ
新闻名称:数据治理成功的六大要素-创新互联
网站地址:http://myzitong.com/article/esscc.html