常见的机器学习算法有哪些-创新互联

机器学习(Machine Learning, ML)是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。
它是人工智能的核心,是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域,它主要使用归纳、综合而不是演绎。

成都创新互联致力于网站制作、做网站,成都网站设计,集团网站建设等服务标准化,推过标准化降低中小企业的建站的成本,并持续提升建站的定制化服务水平进行质量交付,让企业网站从市场竞争中脱颖而出。 选择成都创新互联,就选择了安全、稳定、美观的网站建设服务!

机器学习有哪些算法?本文将为大家盘点十大经典机器学习算法,其中包括了支持向量机、人工神经网络、逻辑回归、朴素贝叶斯、决策树、K- 均值、K- 最近邻算法、随机森林、线性回归和降维。当然盘点的目的,并不是要把这些机器学习算法进行一个排名对比,毕竟算法之间并没有优劣之分,每个算法都有自己的使用的场景。下面我们就来具体分析一下机器学习的十大算法。

常见的机器学习算法有哪些

1、支持向量机
  

支持向量机是一种用于分类问题的监督算法。支持向量机试图在数据点之间绘制两条线,它们之间的边距大。为此,我们将数据项绘制为n维空间中的点,其中,n是输入特征的数量。在此基础上,支持向量机找到一个最优边界,称为超平面(Hyperplane),它通过类标签将可能的输出进行最佳分离。超平面与最近的类点之间的距离称为边距。最优超平面具有大的边界,可以对点进行分类,从而使最近的数据点与这两个类之间的距离大化。
  

2、人工神经网络
  

人工神经网络可以处理大型复杂的机器学习任务。神经网络本质上是一组带有权值的边和节点组成的相互连接的层,称为神经元。在输入层和输出层之间,我们可以插入多个隐藏层。人工神经网络使用了两个隐藏层。除此之外,还需要处理深度学习。人工神经网络的工作原理与大脑的结构类似。一组神经元被赋予一个随机权重,以确定神经元如何处理输入数据。通过对输入数据训练神经网络来学习输入和输出之间的关系。在训练阶段,系统可以访问正确的答案。如果网络不能准确识别输入,系统就会调整权重。经过充分的训练后,它将始终如一地识别出正确的模式。
  

3、逻辑回归
  

逻辑回归与线性回归类似,但它是用于输出为二进制的情况(即,当结果只能有两个可能的值)。对最终输出的预测是一个非线性的S型函数,称为 logistic function, g()。这个逻辑函数将中间结果值映射到结果变量 Y,其值范围从0到1。然后,这些值可以解释为 Y 出现的概率。S型逻辑函数的性质使得逻辑回归更适合用于分类任务。
  

4、朴素贝叶斯
  

朴素贝叶斯是基于贝叶斯定理,应用最为广泛的分类算法之一。对于给定的训练数据集,首先基于特征条件独立假设学习输入/输出的联合概率分布;然后基于此模型,对给定的输入 xx ,利用贝叶斯定理求出后验概率大的输出 yy 。
  

5、决策树
  

决策树可用于回归和分类任务。在这一算法中,训练模型通过学习树表示(Tree representation)的决策规则来学习预测目标变量的值。树是由具有相应属性的节点组成的。在每个节点上,我们根据可用的特征询问有关数据的问题。左右分支代表可能的答案。最终节点(即叶节点)对应于一个预测值。每个特征的重要性是通过自顶向下方法确定的。节点越高,其属性就越重要。
  

6、K- 均值
  

K- 均值(K-means)是通过对数据集进行分类来聚类的。例如,这个算法可用于根据购买历史将用户分组。它在数据集中找到 K 个聚类。K- 均值用于无监督学习,因此,我们只需使用训练数据 X,以及我们想要识别的聚类数量 K。该算法根据每个数据点的特征,将每个数据点迭代地分配给 K 个组中的一个组。它为每个 K- 聚类(称为质心)选择 K 个点。基于相似度,将新的数据点添加到具有最近质心的聚类中。这个过程一直持续到质心停止变化为止。
  

7、K- 最近邻算法
  

K- 最近邻算法(K-Nearest Neighbors,KNN)非常简单。KNN 通过在整个训练集中搜索 K 个最相似的实例,即 K 个邻居,并为所有这些 K 个实例分配一个公共输出变量,来对对象进行分类。K 的选择很关键:较小的值可能会得到大量的噪声和不准确的结果,而较大的值是不可行的。它最常用于分类,但也适用于回归问题。用于评估实例之间相似性的距离可以是欧几里得距离、曼哈顿距离或明氏距离。欧几里得距离是两点之间的普通直线距离。它实际上是点坐标之差平方和的平方根。
  

8、随机森林
  

随机森林(Random Forest)是一种非常流行的集成机器学习算法。这个算法的基本思想是,许多人的意见要比个人的意见更准确。在随机森林中,我们使用决策树集成。为了对新对象进行分类,我们从每个决策树中进行投票,并结合结果,然后根据多数投票做出最终决定。
  

9、线性回归
  

线性回归算得上是最流行的机器学习算法,它是利用数理统计中回归分析,来确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法,目前线性回归的运用十分广泛。线性回归就是要找一条直线,并且让这条直线尽可能地拟合散点图中的数据点。它试图通过将直线方程与该数据拟合来表示自变量(x 值)和数值结果(y 值)。然后就可以用这条线来预测未来的值!这种算法最常用的技术是最小二乘法。这个方法计算出最佳拟合线,以使得与直线上每个数据点的垂直距离最小。总距离是所有数据点的垂直距离(绿线)的平方和。其思想是通过最小化这个平方误差或距离来拟合模型。
  

10、降维
  

由于我们今天能够捕获的数据量之大,机器学习问题变得更加复杂。这就意味着训练极其缓慢,而且很难找到一个好的解决方案。这一问题,通常被称为“维数灾难”。降维试图在不丢失最重要信息的情况下,通过将特定的特征组合成更高层次的特征来解决这个问题。主成分分析是最流行的降维技术。主成分分析通过将数据集压缩到低维线或超平面 / 子空间来降低数据集的维数。这尽可能地保留了原始数据的显著特征。


文章标题:常见的机器学习算法有哪些-创新互联
标题URL:http://myzitong.com/article/gdehs.html