数据科学家的完整学习路径分享
今天就跟大家聊聊有关数据科学家的完整学习路径分享,可能很多人都不太了解,为了让大家更加了解,小编给大家总结了以下内容,希望大家根据这篇文章可以有所收获。
10余年的温江网站建设经验,针对设计、前端、开发、售后、文案、推广等六对一服务,响应快,48小时及时工作处理。营销型网站建设的优势是能够根据用户设备显示端的尺寸不同,自动调整温江建站的显示方式,使网站能够适用不同显示终端,在浏览器中调整网站的宽度,无论在任何一种浏览器上浏览网站,都能展现优雅布局与设计,从而大程度地提升浏览体验。成都创新互联从事“温江网站设计”,“温江网站推广”以来,每个客户项目都认真落实执行。
从Python菜鸟到Python Kaggler的旅程(译注:Kaggle是一个数据建模和数据分析竞赛平台)
假如你想成为一个数据科学家,或者已经是数据科学家的你想扩展你的技能,那么你已经来对地方了。本文的目的就是给数据分析方面的Python新手提供一个完整的学习路径。该路径提供了你需要学习的利用Python进行数据分析的所有步骤的完整概述。如果你已经有一些相关的背景知识,或者你不需要路径中的所有内容,你可以随意调整你自己的学习路径,并且让大家知道你是如何调整的。
步骤0:热身
开始学习旅程之前,先回答第一个问题:为什么使用Python?或者,Python如何发挥作用?
观看DataRobot创始人Jeremy在PyCon Ukraine 2014上的30分钟演讲,来了解Python是多么的有用。
步骤1:设置你的机器环境
现在你已经决心要好好学习了,也是时候设置你的机器环境了。最简单的方法就是从http://Continuum.io上下载分发包Anaconda。Anaconda将你以后可能会用到的大部分的东西进行了打包。采用这个方法的主要缺点是,即使可能已经有了可用的底层库的更新,你仍然需要等待Continuum去更新Anaconda包。当然如果你是一个初学者,这应该没什么问题。
如果你在安装过程中遇到任何问题,你可以在这里找到不同操作系统下更详细的安装说明。
步骤2:学习Python语言的基础知识
你应该先去了解Python语言的基础知识、库和数据结构。Codecademy上的Python课程是你最好的选择之一。完成这个课程后,你就能轻松的利用Python写一些小脚本,同时也能理解Python中的类和对象。
具体学习内容:列表Lists,元组Tuples,字典Dictionaries,列表推导式,字典推导式。
任务:解决HackerRank上的一些Python教程题,这些题能让你更好的用Python脚本的方式去思考问题。
替代资源:如果你不喜欢交互编码这种学习方式,你也可以学习谷歌的Python课程。这个2天的课程系列不但包含前边提到的Python知识,还包含了一些后边将要讨论的东西。
步骤3:学习Python语言中的正则表达式
你会经常用到正则表达式来进行数据清理,尤其是当你处理文本数据的时候。学习正则表达式的最好方法是参加谷歌的Python课程,它会让你能更容易的使用正则表达式。
任务:做关于小孩名字的正则表达式练习。
如果你还需要更多的练习,你可以参与这个文本清理的教程。数据预处理中涉及到的各个处理步骤对你来说都会是不小的挑战。
步骤4:学习Python中的科学库—NumPy, SciPy, Matplotlib以及Pandas
从这步开始,学习旅程将要变得有趣了。下边是对各个库的简介,你可以进行一些常用的操作:
根据NumPy教程进行完整的练习,特别要练习数组arrays。这将会为下边的学习旅程打好基础。
接下来学习Scipy教程。看完Scipy介绍和基础知识后,你可以根据自己的需要学习剩余的内容。
这里并不需要学习Matplotlib教程。对于我们这里的需求来说,Matplotlib的内容过于广泛。取而代之的是你可以学习这个笔记中前68行的内容。
最后学习Pandas。Pandas为Python提供DataFrame功能(类似于R)。这也是你应该花更多的时间练习的地方。Pandas会成为所有中等规模数据分析的最有效的工具。作为开始,你可以先看一个关于Pandas的10分钟简短介绍,然后学习一个更详细的Pandas教程。
您还可以学习两篇博客Exploratory Data Analysis with Pandas和Data munging with Pandas中的内容。
额外资源:
如果你需要一本关于Pandas和Numpy的书,建议Wes McKinney写的“Python for Data Analysis”。
在Pandas的文档中,也有很多Pandas教程,你可以在这里查看。
任务:尝试解决哈佛CS109课程的这个任务。
步骤5:有用的数据可视化
参加CS109的这个课程。你可以跳过前边的2分钟,但之后的内容都是干货。你可以根据这个任务来完成课程的学习。
步骤6:学习Scikit-learn库和机器学习的内容
现在,我们要开始学习整个过程的实质部分了。Scikit-learn是机器学习领域最有用的Python库。这里是该库的简要概述。完成哈佛CS109课程的课程10到课程18,这些课程包含了机器学习的概述,同时介绍了像回归、决策树、整体模型等监督算法以及聚类等非监督算法。你可以根据各个课程的任务来完成相应的课程。
额外资源:
如果说有那么一本书是你必读的,推荐Programming Collective Intelligence。这本书虽然有点老,但依然是该领域最好的书之一。
此外,你还可以参加来自Yaser Abu-Mostafa的机器学习课程,这是最好的机器学习课程之一。如果你需要更易懂的机器学习技术的解释,你可以选择来自Andrew Ng的机器学习课程,并且利用Python做相关的课程练习。
Scikit-learn的教程
任务:尝试Kaggle上的这个挑战
步骤7:练习,练习,再练习
恭喜你,你已经完成了整个学习旅程。
你现在已经学会了你需要的所有技能。现在就是如何练习的问题了,还有比通过在Kaggle上和数据科学家们进行竞赛来练习更好的方式吗?深入一个当前Kaggle上正在进行的比赛,尝试使用你已经学过的所有知识来完成这个比赛。
步骤8:深度学习
现在你已经学习了大部分的机器学习技术,是时候关注一下深度学习了。很可能你已经知道什么是深度学习,但是如果你仍然需要一个简短的介绍,可以看这里。
我自己也是深度学习的新手,所以请有选择性的采纳下边的一些建议。deeplearning.net上有深度学习方面最全面的资源,在这里你会发现所有你想要的东西—讲座、数据集、挑战、教程等。你也可以尝试参加Geoff Hinton的课程,来了解神经网络的基本知识。
附言:如果你需要大数据方面的库,可以试试Pydoop和PyMongo。大数据学习路线不是本文的范畴,是因为它自身就是一个完整的主题。
看完上述内容,你们对数据科学家的完整学习路径分享有进一步的了解吗?如果还想了解更多知识或者相关内容,请关注创新互联行业资讯频道,感谢大家的支持。
当前文章:数据科学家的完整学习路径分享
文章来源:http://myzitong.com/article/gejhgp.html