hive的数据压缩方法
本篇内容主要讲解“hive的数据压缩方法”,感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习“hive的数据压缩方法”吧!
在宁津等地区,都构建了全面的区域性战略布局,加强发展的系统性、市场前瞻性、产品创新能力,以专注、极致的服务理念,为客户提供成都做网站、网站建设、外贸营销网站建设 网站设计制作按需搭建网站,公司网站建设,企业网站建设,高端网站设计,全网营销推广,外贸网站制作,宁津网站建设费用合理。
1、MR支持的压缩编码
压缩格式 | 工具 | 算法 | 文件扩展名 | 是否可切分 |
DEFAULT | 无 | DEFAULT | .deflate | 否 |
Gzip | gzip | DEFAULT | .gz | 否 |
bzip2 | bzip2 | bzip2 | .bz2 | 是 |
LZO | lzop | LZO | .lzo | 否 |
LZ4 | 无 | LZ4 | .lz4 | 否 |
Snappy | 无 | Snappy | .snappy | 否 |
为了支持多种压缩/解压缩算法,Hadoop引入了编码/解码器,如下表所示
压缩格式 | 对应的编码/解码器 |
DEFLATE | org.apache.hadoop.io.compress.DefaultCodec |
gzip | org.apache.hadoop.io.compress.GzipCodec |
bzip2 | org.apache.hadoop.io.compress.BZip2Codec |
LZO | com.hadoop.compression.lzo.LzopCodec |
LZ4 | org.apache.hadoop.io.compress.Lz4Codec |
Snappy | org.apache.hadoop.io.compress.SnappyCodec |
压缩性能的比较
压缩算法 | 原始文件大小 | 压缩文件大小 | 压缩速度 | 解压速度 |
gzip | 8.3GB | 1.8GB | 17.5MB/s | 58MB/s |
bzip2 | 8.3GB | 1.1GB | 2.4MB/s | 9.5MB/s |
LZO | 8.3GB | 2.9GB | 49.3MB/s | 74.6MB/s |
http://google.github.io/snappy/
On a single core of a Core i7 processor in 64-bit mode, Snappy compresses at about 250 MB/sec or more and decompresses at about 500 MB/sec or more.
.2、压缩配置参数
要在Hadoop中启用压缩,可以配置如下参数(mapred-site.xml文件中):
参数 | 默认值 | 阶段 | 建议 |
io.compression.codecs (在core-site.xml中配置) | org.apache.hadoop.io.compress.DefaultCodec, org.apache.hadoop.io.compress.GzipCodec, org.apache.hadoop.io.compress.BZip2Codec, org.apache.hadoop.io.compress.Lz4Codec | 输入压缩 | Hadoop使用文件扩展名判断是否支持某种编解码器 |
mapreduce.map.output.compress | false | mapper输出 | 这个参数设为true启用压缩 |
mapreduce.map.output.compress.codec | org.apache.hadoop.io.compress.DefaultCodec | mapper输出 | 使用LZO、LZ4或snappy编解码器在此阶段压缩数据 |
mapreduce.output.fileoutputformat.compress | false | reducer输出 | 这个参数设为true启用压缩 |
mapreduce.output.fileoutputformat.compress.codec | org.apache.hadoop.io.compress. DefaultCodec | reducer输出 | 使用标准工具或者编解码器,如gzip和bzip2 |
mapreduce.output.fileoutputformat.compress.type | RECORD | reducer输出 | SequenceFile输出使用的压缩类型:NONE和BLOCK |
3、开启Map输出阶段压缩
开启map输出阶段压缩可以减少job中map和Reduce task间数据传输量。具体配置如下:
案例实操:
1)开启hive中间传输数据压缩功能
hive (default)>set hive.exec.compress.intermediate=true;
2)开启mapreduce中map输出压缩功能
hive (default)>set mapreduce.map.output.compress=true;
3)设置mapreduce中map输出数据的压缩方式
hive (default)>set mapreduce.map.output.compress.codec= org.apache.hadoop.io.compress.SnappyCodec;
4)执行查询语句
select count(1) from score;
4 开启Reduce输出阶段压缩
当Hive将输出写入到表中时,输出内容同样可以进行压缩。属性hive.exec.compress.output控制着这个功能。用户可能需要保持默认设置文件中的默认值false,这样默认的输出就是非压缩的纯文本文件了。用户可以通过在查询语句或执行脚本中设置这个值为true,来开启输出结果压缩功能。
案例实操:
1)开启hive最终输出数据压缩功能
hive (default)>set hive.exec.compress.output=true;
2)开启mapreduce最终输出数据压缩
hive (default)>set mapreduce.output.fileoutputformat.compress=true;
3)设置mapreduce最终数据输出压缩方式
hive (default)> set mapreduce.output.fileoutputformat.compress.codec = org.apache.hadoop.io.compress.SnappyCodec;
4)设置mapreduce最终数据输出压缩为块压缩
hive (default)>set mapreduce.output.fileoutputformat.compress.type=BLOCK;
5)测试一下输出结果是否是压缩文件
insert overwrite local directory '/export/servers/snappy' select * from score distribute by s_id sort by s_id desc;
到此,相信大家对“hive的数据压缩方法”有了更深的了解,不妨来实际操作一番吧!这里是创新互联网站,更多相关内容可以进入相关频道进行查询,关注我们,继续学习!
当前名称:hive的数据压缩方法
URL分享:http://myzitong.com/article/gepedo.html