如何进行kubernetesscheduler基于map/reduce模式实现
如何进行kubernetes scheduler基于map/reduce模式实现,很多新手对此不是很清楚,为了帮助大家解决这个难题,下面小编将为大家详细讲解,有这方面需求的人可以来学习下,希望你能有所收获。
创新互联是一家专注于成都网站设计、做网站与策划设计,郊区网站建设哪家好?创新互联做网站,专注于网站建设十多年,网设计领域的专业建站公司;建站业务涵盖:郊区等地区。郊区做网站价格咨询:18980820575
优选阶段通过分map/reduce模式来实现多个node和多种算法的并行计算,并且通过基于二级索引来设计最终的存储结果,从而达到整个计算过程中的无锁设计,同时为了保证分配的随机性,针对同等优先级的采用了随机的方式来进行最终节点的分配,如果大家后续有类似的需求,不妨可以借鉴借鉴
1. 设计基础
1.1 两阶段: 单点与聚合
在进行优选的时候,除了最后一次计算,在进行针对单个算法的计算的时候,会分为两个阶段:单点和聚合
在单点阶段,会根据当前算法针对单个node计算 在聚合阶段,则会根据当前单点阶段计算完成后,来进行聚合
1.2 并行: 节点与算法
单点和聚合两阶段在计算的时候,都是并行的,但是对象则不同,其中单点阶段并行是针对单个node的计算,而聚合阶段则是针对算法级别的计算,通过这种设计分离计算,从而避免多goroutine之间数据竞争,无锁加速优选的计算
1.3 map与reduce
而map与reduce则是针对一个上面并行的两种具体实现,其中map中负责单node打分,而reduce则是针对map阶段的打分进行聚合后,根据汇总的结果进行二次打分计算
1.4 weight
map/reduce阶段都是通过算法计算,如果我们要进行自定义的调整,针对单个算法,我们可以调整其在预选流程中的权重,从而进行定制自己的预选流程
1.5 随机分布
当进行优先级判断的时候,肯定会出现多个node优先级相同的情况,在优选节点的时候,会进行随机计算,从而决定是否用当前优先级相同的node替换之前的最合适的node
2. 源码分析
优选的核心流程主要是在PrioritizeNodes中,这里只介绍其关键的核心数据结构设计
2.1 无锁计算结果保存
无锁计算结果的保存主要是通过下面的二维数组实现, 如果要存储一个算法针对某个node的结果,其实只需要通过两个索引即可:算法索引和节点索引,同理如果我吧针对单个node的索引分配给一个goroutine,则其去其他的goroutine则就可以并行计算
// 在计算的时候,会传入nodes []*v1.Node的数组,存储所有的节点,节点索引主要是指的该部分 results := make([]schedulerapi.HostPriorityList, len(priorityConfigs), len(priorityConfigs))
2.2 基于节点索引的Map计算
之前在预选阶段介绍过ParallelizeUntil函数的实现,其根据传入的数量来生成计算索引,放入chan中,后续多个goroutine从chan中取出数据直接进行计算即可
workqueue.ParallelizeUntil(context.TODO(), 16, len(nodes), func(index int) { // 根据节点和配置的算法进行计算 nodeInfo := nodeNameToInfo[nodes[index].Name] // 获取算法的索引 for i := range priorityConfigs { if priorityConfigs[i].Function != nil { continue } var err error // 通过节点索引,来进行针对单个node的计算结果的保存 results[i][index], err = priorityConfigs[i].Map(pod, meta, nodeInfo) if err != nil { appendError(err) results[i][index].Host = nodes[index].Name } } })
2.3 基于算法索引的Reduce计算
基于算法的并行,则是为每个算法的计算都启动一个goroutine,每个goroutine通过算法索引来进行该算法的所有map阶段的结果的读取,并进行计算,后续结果仍然存储在对应的位置
// 计算策略的分值 for i := range priorityConfigs { if priorityConfigs[i].Reduce == nil { continue } wg.Add(1) go func(index int) { defer wg.Done() if err := priorityConfigs[index].Reduce(pod, meta, nodeNameToInfo, results[index]); err != nil { appendError(err) } if klog.V(10) { for _, hostPriority := range results[index] { klog.Infof("%v -> %v: %v, Score: (%d)", util.GetPodFullName(pod), hostPriority.Host, priorityConfigs[index].Name, hostPriority.Score) } } }(i) } // Wait for all computations to be finished. wg.Wait()
2.4 优先级打分结果统计
根据之前的map/reduce阶段,接下来就是将针对所有node的所有算法计算结果进行累加即可
// Summarize all scores. result := make(schedulerapi.HostPriorityList, 0, len(nodes)) for i := range nodes { result = append(result, schedulerapi.HostPriority{Host: nodes[i].Name, Score: 0}) // 便利所有的算法配置 for j := range priorityConfigs { result[i].Score += results[j][i].Score * priorityConfigs[j].Weight } for j := range scoresMap { result[i].Score += scoresMap[j][i].Score } }
2.5 根据优先级随机筛选host
这里的随机筛选是指的当多个host优先级相同的时候,会有一定的概率用当前的node替换之前的优先级相等的node(到目前为止的优先级最高的node), 其主要通过cntOfMaxScore和rand.Intn(cntOfMaxScore)来进行实现
func (g *genericScheduler) selectHost(priorityList schedulerapi.HostPriorityList) (string, error) { if len(priorityList) == 0 { return "", fmt.Errorf("empty priorityList") } maxScore := priorityList[0].Score selected := priorityList[0].Host cntOfMaxScore := 1 for _, hp := range priorityList[1:] { if hp.Score > maxScore { maxScore = hp.Score selected = hp.Host cntOfMaxScore = 1 } else if hp.Score == maxScore { cntOfMaxScore++ if rand.Intn(cntOfMaxScore) == 0 { // Replace the candidate with probability of 1/cntOfMaxScore selected = hp.Host } } } return selected, nil }
3. 设计总结
优选阶段通过分map/reduce模式来实现多个node和多种算法的并行计算,并且通过基于二级索引来设计最终的存储结果,从而达到整个计算过程中的无锁设计,同时为了保证分配的随机性,针对同等优先级的采用了随机的方式来进行最终节点的分配,如果大家后续有类似的需求,不妨可以借鉴借鉴
看完上述内容是否对您有帮助呢?如果还想对相关知识有进一步的了解或阅读更多相关文章,请关注创新互联行业资讯频道,感谢您对创新互联的支持。
文章名称:如何进行kubernetesscheduler基于map/reduce模式实现
本文链接:http://myzitong.com/article/geppep.html