Spark中会遇到什么坑

这篇文章主要介绍了Spark中会遇到什么坑,具有一定借鉴价值,感兴趣的朋友可以参考下,希望大家阅读完这篇文章之后大有收获,下面让小编带着大家一起了解一下。

十载专注建站、设计、互联网产品按需定制制作服务,业务涵盖高端网站设计商城网站开发重庆小程序开发、软件系统开发、app软件定制开发等。凭借多年丰富的经验,我们会仔细了解每个客户的需求而做出多方面的分析、设计、整合,为客户设计出具风格及创意性的商业解决方案,创新互联公司更提供一系列网站制作和网站推广的服务,以推动各中小企业全面信息数字化,并利用创新技术帮助各行业提升企业形象和运营效率。

1.1 Scala与Intellij集成报错

在Scala安装成功后,准备到Intellij上写Scala代码,发现Scala都配好了(关于如何配置,网上资料很多),结果运行Scala程序时报错。

错误:

Error:scalac: Multiple 'scala-library*.jar' files (scala-library.jar, scala-library.jar, scala-library.jar) in Scala compiler classpath in Scala SDK scala-sdk-2.12.2

解决方法:在OverStackflow上找到了思路。在Intellij中打开project  structure,删除已有的Scala的路径(我的Scala是安装在/usr/local/Cellar/scala/2.12.2路径下的),重新添加/usr/local/Cellar/scala/2.12.2/idea/lib目录即可。

改动前

Spark中会遇到什么坑

改动后

Spark中会遇到什么坑

1.2 Scala语法Intellij不认

在Intellij中写了一个Scala的HelloWorld,代码如下

/**  * Created by jackie on 17/5/7.  */ package com.jackie.scala.s510  object HelloWorld {   def main(args: Array[String]): Unit = {     println("hello world")      println(increaseAnother(5));      println(Array(1,2,3,4).map{(x:Int)=>x+1}.mkString(","));      println(Array(1,2,3,4) map{(x:Int)=>x+1} mkString(","));      println(Array(1,2,3,4) map{(x:Int)=>x+1} mkString(","));      // test object     var person = new Person()     person.name_=("john") // name_=()对应java中的setter方法     println("Person name:" + person.name)      person.name = "Jackie"     println("Person name:" + person.name)      var mp = new MyPerson()     mp.name_("alihaha")     println("MyPerson name:" + person.name)      var pwp = new PersonWithParam("Jackie", 18)     println("PersonWithParam:" + pwp.toString())    }    def increaseAnother(x: Int): Int = x + 1   }

运行的时候,报错mkString无法识别。

错误:mkString can't be resolved

解决方法:需要交代下我各个环境的版本参数,Intellij-14.0, jdk-8,  scala-2.12.2。但是在Intellij中能选择的Scala***版本只有2.11,所有后来将Intellij升级到2017.1版本,这时候还报错Error:scalac:  Error:  org.jetbrains.jps.incremental.scala.remote.ServerException,然后在Intellij中打开project  structure,将scala由2.12.2换成2.11.7,问题解决。

1.3 Spark与Intellij集成的问题

Spark环境都安装好了,所以想在Intellij中运行Spark程序,但是在添加了Spark的相关依赖后,发现无法编译通过。

错误:

Exception NoSuchMethodError: com.google.common.collect.MapMaker.keyEquivalence

解决方法:实现声明,之前在maven中一直引用的都是spark-core2.10,这时候报错,我定位问题出在Guava上,然后找到所有间接依赖了Guava的jar,都exclude,问题还是没有解决。期间添加了Spark的很多依赖,试了都不行,***试了下Spark-core2.11,问题解决(有的时候版本的兼容性真的很坑)。

1.4 hadoop上传本地文件到HDFS

如果想将本地文件上传到HDFS,使用hadoop fs -put localDir hdfsDir,前提是保证hadoop启动。

错误:

jackie@jackies-MacBook-Pro:~|⇒  hadoop fs -put ~/Documents/doc/README.md / 17/05/13 10:56:39 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable 17/05/13 10:56:40 WARN ipc.Client: Failed to connect to server: localhost/127.0.0.1:8020: try once and fail. java.net.ConnectException: Connection refused     at sun.nio.ch.SocketChannelImpl.checkConnect(Native Method)     at sun.nio.ch.SocketChannelImpl.finishConnect(SocketChannelImpl.java:717)     at org.apache.hadoop.net.SocketIOWithTimeout.connect(SocketIOWithTimeout.java:206)     at org.apache.hadoop.net.NetUtils.connect(NetUtils.java:531)     at org.apache.hadoop.net.NetUtils.connect(NetUtils.java:495)     at org.apache.hadoop.ipc.Client$Connection.setupConnection(Client.java:681)     at org.apache.hadoop.ipc.Client$Connection.setupIOstreams(Client.java:777)     at org.apache.hadoop.ipc.Client$Connection.access$3500(Client.java:409)     at org.apache.hadoop.ipc.Client.getConnection(Client.java:1542)     at org.apache.hadoop.ipc.Client.call(Client.java:1373)     at org.apache.hadoop.ipc.Client.call(Client.java:1337)     at org.apache.hadoop.ipc.ProtobufRpcEngine$Invoker.invoke(ProtobufRpcEngine.java:227)     at org.apache.hadoop.ipc.ProtobufRpcEngine$Invoker.invoke(ProtobufRpcEngine.java:116)     at com.sun.proxy.$Proxy10.getFileInfo(Unknown Source)     at org.apache.hadoop.hdfs.protocolPB.ClientNamenodeProtocolTranslatorPB.getFileInfo(ClientNamenodeProtocolTranslatorPB.java:787)     at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)     at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)     at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)     at java.lang.reflect.Method.invoke(Method.java:498)     at org.apache.hadoop.io.retry.RetryInvocationHandler.invokeMethod(RetryInvocationHandler.java:398)     at org.apache.hadoop.io.retry.RetryInvocationHandler$Call.invokeMethod(RetryInvocationHandler.java:163)     at org.apache.hadoop.io.retry.RetryInvocationHandler$Call.invoke(RetryInvocationHandler.java:155)     at org.apache.hadoop.io.retry.RetryInvocationHandler$Call.invokeOnce(RetryInvocationHandler.java:95)     at org.apache.hadoop.io.retry.RetryInvocationHandler.invoke(RetryInvocationHandler.java:335)     at com.sun.proxy.$Proxy11.getFileInfo(Unknown Source)     at org.apache.hadoop.hdfs.DFSClient.getFileInfo(DFSClient.java:1700)     at org.apache.hadoop.hdfs.DistributedFileSystem$27.doCall(DistributedFileSystem.java:1436)     at org.apache.hadoop.hdfs.DistributedFileSystem$27.doCall(DistributedFileSystem.java:1433)     at org.apache.hadoop.fs.FileSystemLinkResolver.resolve(FileSystemLinkResolver.java:81)     at org.apache.hadoop.hdfs.DistributedFileSystem.getFileStatus(DistributedFileSystem.java:1433)     at org.apache.hadoop.fs.Globber.getFileStatus(Globber.java:64)     at org.apache.hadoop.fs.Globber.doGlob(Globber.java:282)     at org.apache.hadoop.fs.Globber.glob(Globber.java:148)     at org.apache.hadoop.fs.FileSystem.globStatus(FileSystem.java:1685)     at org.apache.hadoop.fs.shell.PathData.expandAsGlob(PathData.java:326)     at org.apache.hadoop.fs.shell.CommandWithDestination.getRemoteDestination(CommandWithDestination.java:195)     at org.apache.hadoop.fs.shell.CopyCommands$Put.processOptions(CopyCommands.java:256)     at org.apache.hadoop.fs.shell.Command.run(Command.java:164)     at org.apache.hadoop.fs.FsShell.run(FsShell.java:315)     at org.apache.hadoop.util.ToolRunner.run(ToolRunner.java:76)     at org.apache.hadoop.util.ToolRunner.run(ToolRunner.java:90)     at org.apache.hadoop.fs.FsShell.main(FsShell.java:378) put: Call From jackies-macbook-pro.local/192.168.73.56 to localhost:8020 failed on connection exception: java.net.ConnectException: Connection refused; For more details see:  http://wiki.apache.org/hadoop/ConnectionRefused

解决方法:进入hadoop安装目录(我的是/usr/local/Cellar/hadoop)进入sbin下执行./start-all.sh启动hadoop服务。

1.5 Spark启动

上篇在配置Spark时没有配置spark-defaults.conf文件,所以在Spark安装目录下(我的是/usr/local/Spark)启动./start-all.sh出错。

错误:

spark-shell Using Spark's default log4j profile: org/apache/spark/log4j-defaults.properties Setting default log level to "WARN". To adjust logging level use sc.setLogLevel(newLevel). 17/05/13 13:42:49 WARN NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable 17/05/13 13:42:51 WARN StandaloneAppClient$ClientEndpoint: Failed to connect to master 192.168.73.56:7077 org.apache.spark.SparkException: Exception thrown in awaitResult     at org.apache.spark.rpc.RpcTimeout$$anonfun$1.applyOrElse(RpcTimeout.scala:77)     at org.apache.spark.rpc.RpcTimeout$$anonfun$1.applyOrElse(RpcTimeout.scala:75)     at scala.runtime.AbstractPartialFunction.apply(AbstractPartialFunction.scala:36)     at org.apache.spark.rpc.RpcTimeout$$anonfun$addMessageIfTimeout$1.applyOrElse(RpcTimeout.scala:59)     at org.apache.spark.rpc.RpcTimeout$$anonfun$addMessageIfTimeout$1.applyOrElse(RpcTimeout.scala:59)     at scala.PartialFunction$OrElse.apply(PartialFunction.scala:167)     at org.apache.spark.rpc.RpcTimeout.awaitResult(RpcTimeout.scala:83)     at org.apache.spark.rpc.RpcEnv.setupEndpointRefByURI(RpcEnv.scala:88)     at org.apache.spark.rpc.RpcEnv.setupEndpointRef(RpcEnv.scala:96)     at org.apache.spark.deploy.client.StandaloneAppClient$ClientEndpoint$$anonfun$tryRegisterAllMasters$1$$anon$1.run(StandaloneAppClient.scala:106)     at java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:511)     at java.util.concurrent.FutureTask.run(FutureTask.java:266)     at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)     at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)     at java.lang.Thread.run(Thread.java:745) Caused by: java.io.IOException: Failed to connect to /192.168.73.56:7077

解决方法:将Spark安装目录下的conf中的spark-defaults.conf.template拷贝一份出来,重命名为spark-defaults.conf,按照https://sanwen8.cn/p/3bac5Bj.html配置好,再启动Spark,发现还是报错

https://sanwen8.cn/p/3bac5Bj.html Using Spark's default log4j profile: org/apache/spark/log4j-defaults.properties Setting default log level to "WARN". To adjust logging level use sc.setLogLevel(newLevel). 17/05/13 14:19:12 WARN NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable 17/05/13 14:19:15 ERROR SparkContext: Error initializing SparkContext. java.net.ConnectException: Call From jackies-MacBook-Pro.local/192.168.73.56 to 192.168.73.56:8021 failed on connection exception: java.net.ConnectException: Connection refused; For more details see:  http://wiki.apache.org/hadoop/ConnectionRefused     at sun.reflect.NativeConstructorAccessorImpl.newInstance0(Native Method)

于是按照StackOverflow,将spark-defaults.conf中的spark.eventLog.enabled由true改为false,之后再启动成功。

注意:这里我反复配置了localhost和自己的ip,来回切换,最终证明只要在/etc/hosts中配置好ip对应映射的名称,可以直接用名称即可,不用写ip,而且要保持hadoop中的配置文件和spark中的配置文件要一致,否则针对会精疲力尽。

1.6 将运算任务交给Spark运行的报错

运行下面的一个Demo程序

package com.jackie.scala.s513;  import org.apache.spark.SparkConf; import org.apache.spark.api.java.JavaPairRDD; import org.apache.spark.api.java.JavaRDD; import org.apache.spark.api.java.JavaSparkContext; import org.apache.spark.api.java.function.FlatMapFunction; import org.apache.spark.api.java.function.Function2; import org.apache.spark.api.java.function.PairFunction; import scala.Tuple2;  import java.util.Arrays; import java.util.Iterator; import java.util.List; import java.util.regex.Pattern;  /**  * Created by jackie on 17/5/13.  */ public class Simple {     private static final Pattern SPACE = Pattern.compile(" ");      public static void main(String[] args) throws Exception {          //创建一个RDD对象         SparkConf conf=new SparkConf().setAppName("Simple").setMaster("local");          //创建spark上下文对象,是数据的入口         JavaSparkContext spark=new JavaSparkContext(conf);          //获取数据源         JavaRDD lines = spark.textFile("hdfs://jackie:8020/");          /**          * 对于从数据源得到的DStream,用户可以在其基础上进行各种操作,          * 对于当前时间窗口内从数据源得到的数据首先进行分割,          * 然后利用Map和ReduceByKey方法进行计算,当然***还有使用print()方法输出结果;          */         JavaRDD words = lines.flatMap(new FlatMapFunction() {             @Override             public Iterator call(String s) {                 return Arrays.asList(SPACE.split(s)).iterator();             }         });           //使用RDD的map和reduce方法进行计算         JavaPairRDD ones = words.mapToPair(                 new PairFunction() {                     @Override                     public Tuple2 call(String s) {                         return new Tuple2(s, 1);                     }                 });           JavaPairRDD counts = ones.reduceByKey(                 new Function2() {                     @Override                     public Integer call(Integer i1, Integer i2) {                         return i1 + i2;                     }                 });          List> output = counts.collect();         for (Tuple2 tuple : output) {             //输出计算结果             System.out.println(tuple._1() + ": " + tuple._2());         }           spark.stop();     } }

这个程序需要读取HDFS上根目录下的README.md文件,但是在此之前我执行了"hadoop namenode  -format"(注意,这个操作引起了后面的一系列问题)。所以就准备重新使用hadoop fs -put localDir  hdfsDir上传README.md,结果这时候报错

错误:

hadoop fs -put /Users/jackie/Documents/doc/README.md / 17/05/13 15:47:15 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable 17/05/13 15:47:16 WARN hdfs.DataStreamer: DataStreamer Exception org.apache.hadoop.ipc.RemoteException(java.io.IOException): File /README.md._COPYING_ could only be replicated to 0 nodes instead of minReplication (=1).  There are 0 datanode(s) running and no node(s) are excluded in this operation.     at org.apache.hadoop.hdfs.server.blockmanagement.BlockManager.chooseTarget4NewBlock(BlockManager.java:1733)     at org.apache.hadoop.hdfs.server.namenode.FSDirWriteFileOp.chooseTargetForNewBlock(FSDirWriteFileOp.java:265)     at org.apache.hadoop.hdfs.server.namenode.FSNamesystem.getAdditionalBlock(FSNamesystem.java:2496)     at org.apache.hadoop.hdfs.server.namenode.NameNodeRpcServer.addBlock(NameNodeRpcServer.java:828)

后来发现是datanode没有启动,然后开始找datanode没有启动的原因,在这里http://www.aboutyun.com/thread-7931-1-1.html

文中解释:当我们执行文件系统格式化时,会在namenode数据文件夹(即配置文件中dfs.name.dir在本地系统的路径)中保存一个current/VERSION文件,记录namespaceID,标识了所格式化的  namenode的版本。如果我们频繁的格式化namenode,那么datanode中保存(即配置文件中dfs.data.dir在本地系统的路径)的current/VERSION文件只是你***次格式化时保存的namenode的ID,因此就会造成datanode与namenode之间的id不一致。

解决方法:采取的做法是根据执行hadoop namenode –format得到成功的提示。

Spark中会遇到什么坑

这时候再执行jps命令,我们就可以看到datanode了

Spark中会遇到什么坑

类似的,同样是在执行hadoop fs -put /Users/jackie/Documents/doc/README.md /是报错如下

hadoop fs -put /Users/jackie/Documents/doc/README.md / 17/05/15 09:51:04 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable 17/05/15 09:51:05 WARN ipc.Client: Failed to connect to server: jackie/192.168.73.56:8020: try once and fail. java.net.ConnectException: Connection refused     at sun.nio.ch.SocketChannelImpl.checkConnect(Native Method)     at sun.nio.ch.SocketChannelImpl.finishConnect(SocketChannelImpl.java:717)     at org.apache.hadoop.net.SocketIOWithTimeout.connect(SocketIOWithTimeout.java:206)     at org.apache.hadoop.net.NetUtils.connect(NetUtils.java:531)     at org.apache.hadoop.net.NetUtils.connect(NetUtils.java:495)     at org.apache.hadoop.ipc.Client$Connection.setupConnection(Client.java:681)     at org.apache.hadoop.ipc.Client$Connection.setupIOstreams(Client.java:777)     at org.apache.hadoop.ipc.Client$Connection.access$3500(Client.java:409)

一开始以为是ip的配置问题,但是反复修改无果,后来发现使用jps时,没有启动namenode,于是在网上找http://blog.csdn.net/bychjzh/article/details/7830508

于是在/usr/local/Cellar/hadoop/hdfs下删除原来在core-site.xml中配置的tmp目录,然后新建了hadoop_tmp目录,并在core-site.xml中修改成

      hadoop.tmp.dir /usr/local/Cellar/hadoop/hdfs/hadoop_tmp     A base for other temporary directories.   

并执行hadoop namenode –format,***在使用start-all.sh启动所有的服务,执行上传文件成功

感谢你能够认真阅读完这篇文章,希望小编分享的“Spark中会遇到什么坑”这篇文章对大家有帮助,同时也希望大家多多支持创新互联,关注创新互联行业资讯频道,更多相关知识等着你来学习!


分享标题:Spark中会遇到什么坑
本文路径:http://myzitong.com/article/gesodi.html