JavaScript中怎么实现一个二叉堆
本篇文章为大家展示了JavaScript中怎么实现一个二叉堆,内容简明扼要并且容易理解,绝对能使你眼前一亮,通过这篇文章的详细介绍希望你能有所收获。
专注于为中小企业提供成都网站设计、网站制作服务,电脑端+手机端+微信端的三站合一,更高效的管理,为中小企业大武口免费做网站提供优质的服务。我们立足成都,凝聚了一批互联网行业人才,有力地推动了1000多家企业的稳健成长,帮助中小企业通过网站建设实现规模扩充和转变。
前言
二叉树(Binary Tree)是一种树形结构,它的特点是每个节点最多只有两个分支节点,一棵二叉树通常由根节点、分支节点、叶子节点组成,如下图所示。每个分支节点也常常被称作为一棵子树,而二叉堆是一种特殊的树,它属于完全二叉树。
二叉树与二叉堆的关系
在日常工作中会遇到很多数组的操作,比如排序等。那么理解二叉堆的实现对以后的开发效率会有所提升,下面就简单介绍一下什么是二叉树,什么是二叉堆。
二叉树特征
根节点:二叉树最顶层的节点
分支节点:除了根节点以外且拥有叶子节点
叶子节点:除了自身,没有其他子节点
在二叉树中,我们常常还会用父节点和子节点来描述,比如上图中左侧节点 2 为 6 和 3 的父节点,反之 6 和 3 是 2 子节点。
二叉树分类
二叉树分为满二叉树(full binary tree)和完全二叉树(complete binary tree)。
满二叉树:一棵深度为 k 且有 2 ^ k - 1个节点的二叉树称为满二叉树
完全二叉树:完全二叉树是指最后一层左边是满的,右边可能满也可能不满,然后其余层都是满的二叉树称为完全二叉树(满二叉树也是一种完全二叉树)
二叉树结构
从图中我们可以看出二叉树是从上到下依次排列下来,可想而知可以用一个数组来表示二叉树的结构,从下标 index( 0 - 8 ) 从上到下依次排列。
二叉树左侧节点表达式 index * 2 + 1。例如:以根节点为例求左侧节点,根节点的下标为0,则左侧节点的序数是1 ,对应数组中的值为1
二叉树右侧节点表达式 index * 2 + 2。例如:以根节点为例求右侧节点,根节点的下标为0,则右侧节点的序数是2 ,对应数组中的值为 8
二叉树叶子节点表达式 序数 >= floor( N / 2 )都是叶子节点(N是数组的长度)。例如:floor( 9 / 2 ) = 4 ,则从下标 4 开始的值都为叶子节点
二叉堆特征
二叉堆是一个完全二叉树,父节点与子节点要保持固定的序关系,并且每个节点的左子树和右子树都是一个二叉堆。
从上图可以看出
图一:每个父节点大于子节点或等于子节点,满足二叉堆的性质
图二:其中有一个父节点小于子节点则不满足二叉堆性质
二叉堆分类
二叉堆根据排序不同,可以分为最大堆和最小堆
最大堆:根节点的键值是所有堆节点键值中最大者,且每个父节点的值都比子节点的值大
最小堆:根节点的键值是所有堆节点键值中最小者,且每个父节点的值都比子节点的值小
如何实现二叉堆
通过上面的讲述想必大家对二叉堆有了一定的理解,那么接下来就是如何实现。以最大堆为例,首先要初始化数组然后通过交换位置形成最大堆。
初始化二叉堆
从上面描述,我们可以知道二叉堆其实就是一个数组,那么初始化就非常简单了。
class Heap{ constructor(arr){ this.data = [...arr]; this.size = this.data.length; } }
父子节点交换位置
图一中 2 作为父节点小于子节点,很显然不符合最大堆性质。maxHeapify 函数可以把每个不符合最大堆性质的节点调换位置,从而满足最大堆性质的数组。
调整步骤:
调整分支节点 2 的位置(不满足最大堆性质)
获取父节点 2 的左右节点 ( 12 , 5 ) ,从 ( 2 , 15 , 5 ) 中进行比较
找出最大的节点与父节点进行交换,如果该节点本身为最大节点则停止操作
重复 step2 的操作,从 2 , 4 , 7 中找出最大值与 2 做交换(递归)
maxHeapify(i) { let max = i; if(i >= this.size){ return; } // 当前序号的左节点 const l = i * 2 + 1; // 当前需要的右节点 const r = i * 2 + 2; // 求当前节点与其左右节点三者中的最大值 if(l < this.size && this.data[l] > this.data[max]){ max = l; } if(r < this.size && this.data[r] > this.data[max]){ max = r; } // 最终max节点是其本身,则已经满足最大堆性质,停止操作 if(max === i) { return; } // 父节点与最大值节点做交换 const t = this.data[i]; this.data[i] = this.data[max]; this.data[max] = t; // 递归向下继续执行 return this.maxHeapify(max); }
形成最大堆
我们可以看到,初始化是由一个数组组成,以下图为例很显然并不会满足最大堆的性质,上述 maxHeapify 函数只是对某一个节点作出对调,无法对整个数组进行重构,所以我们要依次对数组进行递归重构。
找到所有分支节点 Math.floor( N / 2 )(不包括叶子节点)
将找到的子节点进行 maxHeapify 操作
rebuildHeap(){ // 叶子节点 const L = Math.floor(this.size / 2); for(let i = L - 1; i >= 0; i--){ this.maxHeapify(i); } }
生成一个升序的数组
swap 函数交换首位位置
将最后一个从堆中拿出相当于 size - 1
执行 maxHeapify 函数进行根节点比较找出最大值进行交换
最终 data 会变成一个升序的数组
sort() { for(let i = this.size - 1; i > 0; i--){ swap(this.data, 0, i); this.size--; this.maxHeapify(0); } }
插入方法
Insert 函数作为插入节点函数,首先
鸿蒙官方战略合作共建——HarmonyOS技术社区
往 data 结尾插入节点
因为节点追加,size + 1
因为一个父节点拥有 2 个子节点,我们可以根据这个性质通过 isHeap 函数获取第一个叶子节点,可以通过第一个叶子节点获取新插入的节点,然后进行 3 个值的对比,找出最大值,判断插入的节点。如果跟父节点相同则不进行重构(相等满足二叉堆性质),否则进行 rebuildHeap 重构堆
isHeap() { const L = Math.floor(this.size / 2); for (let i = L - 1; i >= 0; i--) { const l = this.data[left(i)] || Number.MIN_SAFE_INTEGER; const r = this.data[right(i)] || Number.MIN_SAFE_INTEGER; const max = Math.max(this.data[i], l, r); if (max !== this.data[i]) { return false; } return true; } } insert(key) { this.data[this.size] = key; this.size++ if (this.isHeap()) { return; } this.rebuildHeap(); }
删除方法
delete 函数作为删除节点,首先
删除传入index的节点
因为节点删除,size - 1
重复上面插入节点的操作
delete(index) { if (index >= this.size) { return; } this.data.splice(index, 1); this.size--; if (this.isHeap()) { return; } this.rebuildHeap(); }
完整代码
/** * 最大堆 */ function left(i) { return (i * 2) + 1; } function right(i) { return (i * 2) + 2; } function swap(A, i, j) { const t = A[i]; A[i] = A[j]; A[j] = t; } class Heap { constructor(arr) { this.data = [...arr]; this.size = this.data.length; this.rebuildHeap = this.rebuildHeap.bind(this); this.isHeap = this.isHeap.bind(this); this.sort = this.sort.bind(this); this.insert = this.insert.bind(this); this.delete = this.delete.bind(this); this.maxHeapify = this.maxHeapify.bind(this); } /** * 重构堆,形成最大堆 */ rebuildHeap() { const L = Math.floor(this.size / 2); for (let i = L - 1; i >= 0; i--) { this.maxHeapify(i); } } isHeap() { const L = Math.floor(this.size / 2); for (let i = L - 1; i >= 0; i--) { const l = this.data[left(i)] || Number.MIN_SAFE_INTEGER; const r = this.data[right(i)] || Number.MIN_SAFE_INTEGER; const max = Math.max(this.data[i], l, r); if (max !== this.data[i]) { return false; } return true; } } sort() { for (let i = this.size - 1; i > 0; i--) { swap(this.data, 0, i); this.size--; this.maxHeapify(0); } } insert(key) { this.data[this.size++] = key; if (this.isHeap()) { return; } this.rebuildHeap(); } delete(index) { if (index >= this.size) { return; } this.data.splice(index, 1); this.size--; if (this.isHeap()) { return; } this.rebuildHeap(); } /** * 交换父子节点位置,符合最大堆特征 * @param {*} i */ maxHeapify(i) { let max = i; if (i >= this.size) { return; } // 求左右节点中较大的序号 const l = left(i); const r = right(i); if (l < this.size && this.data[l] > this.data[max]) { max = l; } if (r < this.size && this.data[r] > this.data[max]) { max = r; } // 如果当前节点最大,已经是最大堆 if (max === i) { return; } swap(this.data, i, max); // 递归向下继续执行 return this.maxHeapify(max); } } module.exports = Heap;
示例
相信通过上面的讲述大家对最大堆的实现已经有了一定的理解,我们可以利用这个来进行排序。
const arr = [15, 12, 8, 2, 5, 2, 3, 4, 7]; const fun = new Heap(arr); fun.rebuildHeap(); // 形成最大堆的结构 fun.sort();// 通过排序,生成一个升序的数组 console.log(fun.data) // [2, 2, 3, 4, 5, 7, 8, 12, 15]
上述内容就是JavaScript中怎么实现一个二叉堆,你们学到知识或技能了吗?如果还想学到更多技能或者丰富自己的知识储备,欢迎关注创新互联行业资讯频道。
分享文章:JavaScript中怎么实现一个二叉堆
标题网址:http://myzitong.com/article/gihisd.html