pandas中如何使用merge函数
这篇文章给大家分享的是有关pandas中如何使用merge函数的内容。小编觉得挺实用的,因此分享给大家做个参考,一起跟随小编过来看看吧。
我们提供的服务有:成都网站建设、成都做网站、微信公众号开发、网站优化、网站认证、兴宾ssl等。为上千家企事业单位解决了网站和推广的问题。提供周到的售前咨询和贴心的售后服务,是有科学管理、有技术的兴宾网站制作公司
merge
merge函数方法类似SQL里的join,可以是pd.merge或者df.merge,区别就在于后者待合并的数据是
pd.merge( left: 'DataFrame | Series', right: 'DataFrame | Series', how: 'str' = 'inner', on: 'IndexLabel | None' = None, left_on: 'IndexLabel | None' = None, right_on: 'IndexLabel | None' = None, left_index: 'bool' = False, right_index: 'bool' = False, sort: 'bool' = False, suffixes: 'Suffixes' = ('_x', '_y'), copy: 'bool' = True, indicator: 'bool' = False, validate: 'str | None' = None, ) -> 'DataFrame'
在函数方法中,关键参数含义如下:
left: 用于连接的左侧数据
right: 用于连接的右侧数据
how: 数据连接方式,默认为 inner,可选outer、left和right
on: 连接关键字段,左右侧数据中需要都存在,否则就用left_on和right_on
left_on: 左侧数据用于连接的关键字段
right_on: 右侧数据用于连接的关键字段
left_index: True表示左侧索引为连接关键字段
right_index: True表示右侧索引为连接关键字段
suffixes: ‘Suffixes’ = (’_x’, ‘_y’),可以自由指定,就是同列名合并后列名显示后缀
indicator: 是否显示合并后某行数据的归属来源
接下来,我们就对该函数功能进行演示
基础合并
In [55]: df1 = pd.DataFrame({'key': ['foo', 'bar', 'bal'], ...: 'value2': [1, 2, 3]}) In [56]: df2 = pd.DataFrame({'key': ['foo', 'bar', 'baz'], ...: 'value1': [5, 6, 7]}) In [57]: df1.merge(df2) Out[57]: key value2 value1 0 foo 1 5 1 bar 2 6
其他连接方式
In [58]: df1.merge(df2, how='left') Out[58]: key value2 value1 0 foo 1 5.0 1 bar 2 6.0 2 bal 3 NaN In [59]: df1.merge(df2, how='right') Out[59]: key value2 value1 0 foo 1.0 5 1 bar 2.0 6 2 baz NaN 7 In [60]: df1.merge(df2, how='outer') Out[60]: key value2 value1 0 foo 1.0 5.0 1 bar 2.0 6.0 2 bal 3.0 NaN 3 baz NaN 7.0 In [61]: df1.merge(df2, how='cross') Out[61]: key_x value2 key_y value1 0 foo 1 foo 5 1 foo 1 bar 6 2 foo 1 baz 7 3 bar 2 foo 5 4 bar 2 bar 6 5 bar 2 baz 7 6 bal 3 foo 5 7 bal 3 bar 6 8 bal 3 baz 7
指定连接键
可以指定单个连接键,也可以指定多个连接键
In [62]: df1 = pd.DataFrame({'lkey1': ['foo', 'bar', 'bal'], ...: 'lkey2': ['a', 'b', 'c'], ...: 'value2': [1, 2, 3]}) In [63]: df2 = pd.DataFrame({'rkey1': ['foo', 'bar', 'baz'], ...: 'rkey2': ['a', 'b', 'c'], ...: 'value2': [5, 6, 7]}) In [64]: df1 Out[64]: lkey1 lkey2 value2 0 foo a 1 1 bar b 2 2 bal c 3 In [65]: df2 Out[65]: rkey1 rkey2 value2 0 foo a 5 1 bar b 6 2 baz c 7 In [66]: df1.merge(df2, left_on='lkey1', right_on='rkey1') Out[66]: lkey1 lkey2 value2_x rkey1 rkey2 value2_y 0 foo a 1 foo a 5 1 bar b 2 bar b 6 In [67]: df1.merge(df2, left_on=['lkey1','lkey2'], right_on=['rkey1','rkey2']) Out[67]: lkey1 lkey2 value2_x rkey1 rkey2 value2_y 0 foo a 1 foo a 5 1 bar b 2 bar b 6
指定索引为键
Out[68]: df1.merge(df2, left_index=True, right_index=True) Out[68]: lkey1 lkey2 value2_x rkey1 rkey2 value2_y 0 foo a 1 foo a 5 1 bar b 2 bar b 6 2 bal c 3 baz c 7
设置重复列后缀
In [69]: df1.merge(df2, left_on='lkey1', right_on='rkey1', suffixes=['左','右']) Out[69]: lkey1 lkey2 value2左 rkey1 rkey2 value2右 0 foo a 1 foo a 5 1 bar b 2 bar b 6
连接指示
新增一列用于显示数据来源
In [70]: df1.merge(df2, left_on='lkey1', right_on='rkey1', suffixes=['左','右'], how='outer', ...: indicator=True ...: ) Out[70]: lkey1 lkey2 value2左 rkey1 rkey2 value2右 _merge 0 foo a 1.0 foo a 5.0 both 1 bar b 2.0 bar b 6.0 both 2 bal c 3.0 NaN NaN NaN left_only 3 NaN NaN NaN baz c 7.0 right_only
感谢各位的阅读!关于“pandas中如何使用merge函数”这篇文章就分享到这里了,希望以上内容可以对大家有一定的帮助,让大家可以学到更多知识,如果觉得文章不错,可以把它分享出去让更多的人看到吧!
文章名称:pandas中如何使用merge函数
文章位置:http://myzitong.com/article/gooddp.html