Flink和Drools的实时日志处理方法是什么

本篇内容介绍了“Flink和Drools的实时日志处理方法是什么”的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!

我们提供的服务有:成都网站设计、成都网站建设、微信公众号开发、网站优化、网站认证、罗山ssl等。为成百上千企事业单位解决了网站和推广的问题。提供周到的售前咨询和贴心的售后服务,是有科学管理、有技术的罗山网站制作公司

背景

日志系统接入的日志种类多、格式复杂多样,主流的有以下几种日志:

  • filebeat采集到的文本日志,格式多样
  • winbeat采集到的操作系统日志
  • 设备上报到logstash的syslog日志
  • 接入到kafka的业务日志

以上通过各种渠道接入的日志,存在2个主要的问题:

  • 格式不统一、不规范、标准化不够
  • 如何从各类日志中提取出用户关心的指标,挖掘更多的业务价值

为了解决上面2个问题,我们基于flink和drools规则引擎做了实时的日志处理服务。

系统架构

架构比较简单,架构图如下:

Flink和Drools的实时日志处理方法是什么  

各类日志都是通过kafka汇总,做日志中转。

flink消费kafka的数据,同时通过API调用拉取drools规则引擎,对日志做解析处理后,将解析后的数据存储到Elasticsearch中,用于日志的搜索和分析等业务。

为了监控日志解析的实时状态,flink会将日志处理的统计数据,如每分钟处理的日志量,每种日志从各个机器IP来的日志量写到redis中,用于监控统计。

 

模块介绍

系统项目命名为eagle。

  • eagle-api:基于springboot,作为drools规则引擎的写入和读取API服务。

  • eagle-common:通用类模块。

  • eagle-log:基于flink的日志处理服务。

重点讲一下eagle-log:

对接kafka、ES和Redis

对接kafka和ES都比较简单,用的官方的connector(flink-connector-kafka-0.10和flink-connector-elasticsearch7),详见代码。

对接Redis,最开始用的是org.apache.bahir提供的redis connector,后来发现灵活度不够,就使用了Jedis。

在将统计数据写入redis的时候,最开始用的keyby分组后缓存了分组数据,在sink中做统计处理后写入,参考代码如下:

String name = "redis-agg-log";
        DataStream>> keyedStream = dataSource.keyBy((KeySelector) log -> log.getIndex())
                .timeWindow(Time.seconds(windowTime)).trigger(new CountTriggerWithTimeout<>(windowCount, TimeCharacteristic.ProcessingTime))
                .process(new ProcessWindowFunction>, String, TimeWindow>() {
                    @Override
                    public void process(String s, Context context, Iterable iterable, Collector>> collector) {
                        ArrayList logs = Lists.newArrayList(iterable);
                        if (logs.size() > 0) {
                            collector.collect(new Tuple2(s, logs));
                        }
                    }
                }).setParallelism(redisSinkParallelism).name(name).uid(name);
 

后来发现这样做对内存消耗比较大,其实不需要缓存整个分组的原始数据,只需要一个统计数据就OK了,优化后:

String name = "redis-agg-log";
        DataStream keyedStream = dataSource.keyBy((KeySelector) log -> log.getIndex())
                .timeWindow(Time.seconds(windowTime))
                .trigger(new CountTriggerWithTimeout<>(windowCount, TimeCharacteristic.ProcessingTime))
                .aggregate(new LogStatAggregateFunction(), new LogStatWindowFunction())
                .setParallelism(redisSinkParallelism).name(name).uid(name);
 

这里使用了flink的聚合函数和Accumulator,通过flink的agg操作做统计,减轻了内存消耗的压力。

使用broadcast广播drools规则引擎

1、drools规则流通过broadcast map state广播出去。

2、kafka的数据流connect规则流处理日志。

//广播规则流
env.addSource(new RuleSourceFunction(ruleUrl)).name(ruleName).uid(ruleName).setParallelism(1)
                .broadcast(ruleStateDescriptor);

//kafka数据流
FlinkKafkaConsumer010 source = new FlinkKafkaConsumer010<>(kafkaTopic, new LogSchema(), properties);env.addSource(source).name(kafkaTopic).uid(kafkaTopic).setParallelism(kafkaParallelism);

//数据流connect规则流处理日志
BroadcastConnectedStream connectedStreams = dataSource.connect(ruleSource);
connectedStreams.process(new LogProcessFunction(ruleStateDescriptor, ruleBase)).setParallelism(processParallelism).name(name).uid(name);

“Flink和Drools的实时日志处理方法是什么”的内容就介绍到这里了,感谢大家的阅读。如果想了解更多行业相关的知识可以关注创新互联网站,小编将为大家输出更多高质量的实用文章!


当前题目:Flink和Drools的实时日志处理方法是什么
浏览路径:http://myzitong.com/article/gpdics.html