大数据怎么彻底解决分布式系统一致性问题

大数据怎么彻底解决分布式系统一致性问题,很多新手对此不是很清楚,为了帮助大家解决这个难题,下面小编将为大家详细讲解,有这方面需求的人可以来学习下,希望你能有所收获。

创新互联公司专业为企业提供潼关网站建设、潼关做网站、潼关网站设计、潼关网站制作等企业网站建设、网页设计与制作、潼关企业网站模板建站服务,十余年潼关做网站经验,不只是建网站,更提供有价值的思路和整体网络服务。

  其实个人理解的时候,更希望能够得到代码层面的实现,单纯的理论知识还是不够落地,总结容易,真正实现起来还是需要项目的积累。

  保证最终一致性的模式

  1.查询模式

  任何服务操作都需要提供一个查询接口,用来向外输出操作执行的状态。即:单笔查询,为了使查询操作有一个唯一标识,需要一个分布式环境下的ID,可用分布式锁,redis 递增,机器的唯一码 拿出几位存为机器id,这样一来每次查询操作相对更快。可解决同步调用超时问题异步回调超时问题。

  2.补偿模式

  再操作失败,我们需要修正有问题的操作,是分布式系统达到一致,为了让系统达到一致而做出的努力都叫做补偿操作。这个场景就和出水问题一样啊!!!补偿操作分为:自动回复,通知运营,和技巧运营。

  3.异步确保模式

  再对响应时间要求不高的场景,通过异步的方式处理,再把结果告知使用方,这个方案最大的好处就是能对高并发流量进行消峰,例如电商中的物流,配送,支付系统的计费,入账。

  4.定期校对模式

  再操作主流系统间执行校对操作,再时候异步批量校对操作的状态,如果不一直进行补偿,这句话有点不太理解,定期校对系统如图

大数据怎么彻底解决分布式系统一致性问题

定期校对系统多用于金融系统,针对于数据的准确性。

  5.可靠消息模式

  利用消息队列实现异步化

  ①消息的可靠发送

  发送消息之前先将消息持久化到数据库,将状态标记为未发送,然后发送消息,如果发送成功,则标记,定时从数据库捞取一定时间内未发送的消息并发送。

  ②消息处理器的幂等性

  幂等性,幂等性,面试和刷题你总会遇到,要想解决,就得先知道啥叫幂等性。

  在网络延迟传输中,会造成消息队列重试,在充实过程中,消息会存在重复

  解决方案:

  1.如果是数据库的插入操作,给消息做一个主键,避免出现脏数据。

  2.使用第三方做消费记录,例如Redis,全局id为K,消息为V,写入到Redis,消费之前先去查Redis是否存在

  3.使用数据库的行级锁

  6.缓存一致性模式

  如果面对亿级读需求,需要非关系型数据库抗住流量,这里有个问题?啥叫关系型数据库?(能够互相连接的列表式数据库)

  读的顺序是先读缓存,读不到再读数据库,写的顺序是先写数据库,后写缓存。

  超时处理模式

  1微服务的交互模式

  ①同步调用模式

  服务1调用服务2,服务1等待服务2返回结果

  ②异步调用模式

  服务1调用服务2,服务2处理后,反向通知服务2

  ③消息队列异步处理模式

  服务1传递给服务2,不需要关心返回结果

  ①同步调用模式解决方案

  两状态

大数据怎么彻底解决分布式系统一致性问题

大数据怎么彻底解决分布式系统一致性问题

    三状态

大数据怎么彻底解决分布式系统一致性问题

  ②异步调用模式解决方案

大数据怎么彻底解决分布式系统一致性问题

   ③消息队列异步处理模式解决方案

大数据怎么彻底解决分布式系统一致性问题

文章对服务化系统中同步调用,异步调用,消息队列等应用场景进行了分析,个人理解还是不到位,还有一些疑问,例如什么时候会导致消息重发?消息重发仍然失败怎么办?失败次数超过预期怎么办?还有就是怎么样从代码层面实现,这些在面试中都太笼统了,根本解决不了实际问题,还是要从实际场景解决问题。

看完上述内容是否对您有帮助呢?如果还想对相关知识有进一步的了解或阅读更多相关文章,请关注创新互联行业资讯频道,感谢您对创新互联的支持。


分享题目:大数据怎么彻底解决分布式系统一致性问题
当前路径:http://myzitong.com/article/gpgehd.html