java代码建立二叉树,创建二叉树的代码java
用java建立二叉树
数据结构的教材里有,
定制设计可以根据自己的需求进行定制,成都网站设计、网站建设构思过程中功能建设理应排到主要部位公司成都网站设计、网站建设的运用实际效果公司网站制作网站建立与制做的实际意义
建立两个类就应该可以了。
一个是树的节点,一个是树,这个是我以前编写的宽度优先遍历的树的构建和遍历,希望对你有帮助。文件名是:Tree.java
import java.util.ArrayList;
// 树的一个节点
class TreeNode {
Object _value = null; // 他的值
TreeNode _parent = null; // 他的父节点,根节点没有PARENT
ArrayList _childList = new ArrayList(); // 他的孩子节点
public TreeNode( Object value, TreeNode parent ){
this._parent = parent;
this._value = value;
}
public TreeNode getParent(){
return _parent;
}
public String toString() {
return _value.toString();
}
}
public class Tree {
// 给出宽度优先遍历的值数组,构建出一棵多叉树
// null 值表示一个层次的结束
// "|" 表示一个层次中一个父亲节点的孩子输入结束
// 如:给定下面的值数组:
// { "root", null, "left", "right", null }
// 则构建出一个根节点,带有两个孩子("left","right")的树
public Tree( Object[] values ){
// 创建根
_root = new TreeNode( values[0], null );
// 创建下面的子节点
TreeNode currentParent = _root; // 用于待创建节点的父亲
//TreeNode nextParent = null;
int currentChildIndex = 0; // 表示 currentParent 是他的父亲的第几个儿子
//TreeNode lastNode = null; // 最后一个创建出来的TreeNode,用于找到他的父亲
for ( int i = 2; i values.length; i++ ){
// 如果null ,表示下一个节点的父亲是当前节点的父亲的第一个孩子节点
if ( values[i] == null ){
currentParent = (TreeNode)currentParent._childList.get(0);
currentChildIndex = 0;
continue;
}
// 表示一个父节点的所有孩子输入完毕
if ( values[i].equals("|") ){
if ( currentChildIndex+1 currentParent._childList.size() ){
currentChildIndex++;
currentParent = (TreeNode)currentParent._parent._childList.get(currentChildIndex);
}
continue;
}
TreeNode child = createChildNode( currentParent, values[i] );
}
}
TreeNode _root = null;
public TreeNode getRoot(){
return _root;
}
/**
// 按宽度优先遍历,打印出parent子树所有的节点
private void printSteps( TreeNode parent, int currentDepth ){
for ( int i = 0; i parent._childList.size(); i++ ){
TreeNode child = (TreeNode)parent._childList.get(i);
System.out.println(currentDepth+":"+child);
}
if ( parent._childList.size() != 0 ) System.out.println(""+null);// 为了避免叶子节点也会打印null
//打印 parent 同层的节点的孩子
if ( parent._parent != null ){ // 不是root
int i = 1;
while ( i parent._parent._childList.size() ){// parent 的父亲还有孩子
TreeNode current = (TreeNode)parent._parent._childList.get(i);
printSteps( current, currentDepth );
i++;
}
}
// 递归调用,打印所有节点
for ( int i = 0; i parent._childList.size(); i++ ){
TreeNode child = (TreeNode)parent._childList.get(i);
printSteps( child, currentDepth+1 );
}
}
// 按宽度优先遍历,打印出parent子树所有的节点
public void printSteps(){
System.out.println(""+_root);
System.out.println(""+null);
printSteps(_root, 1 );
}**/
// 将给定的值做为 parent 的孩子,构建节点
private TreeNode createChildNode( TreeNode parent, Object value ){
TreeNode child = new TreeNode( value , parent );
parent._childList.add( child );
return child;
}
public static void main(String[] args) {
Tree tree = new Tree( new Object[]{ "root", null,
"left", "right", null,
"l1","l2","l3", "|", "r1","r2",null } );
//tree.printSteps();
System.out.println(""+ ( (TreeNode)tree.getRoot()._childList.get(0) )._childList.get(0) );
System.out.println(""+ ( (TreeNode)tree.getRoot()._childList.get(0) )._childList.get(1) );
System.out.println(""+ ( (TreeNode)tree.getRoot()._childList.get(0) )._childList.get(2) );
System.out.println(""+ ( (TreeNode)tree.getRoot()._childList.get(1) )._childList.get(0) );
System.out.println(""+ ( (TreeNode)tree.getRoot()._childList.get(1) )._childList.get(1) );
}
}
java如何创建一颗二叉树
计算机科学中,二叉树是每个结点最多有两个子树的有序树。通常子树的根被称作“左子树”(left
subtree)和“右子树”(right
subtree)。二叉树常被用作二叉查找树和二叉堆或是二叉排序树。
二叉树的每个结点至多只有二棵子树(不存在度大于2的结点),二叉树的子树有左右之分,次序不能颠倒。二叉树的第i层至多有2的
i
-1次方个结点;深度为k的二叉树至多有2^(k)
-1个结点;对任何一棵二叉树T,如果其终端结点数(即叶子结点数)为n0,度为2的结点数为n2,则n0
=
n2
+
1。
树是由一个或多个结点组成的有限集合,其中:
⒈必有一个特定的称为根(ROOT)的结点;
二叉树
⒉剩下的结点被分成n=0个互不相交的集合T1、T2、......Tn,而且,
这些集合的每一个又都是树。树T1、T2、......Tn被称作根的子树(Subtree)。
树的递归定义如下:(1)至少有一个结点(称为根)(2)其它是互不相交的子树
1.树的度——也即是宽度,简单地说,就是结点的分支数。以组成该树各结点中最大的度作为该树的度,如上图的树,其度为2;树中度为零的结点称为叶结点或终端结点。树中度不为零的结点称为分枝结点或非终端结点。除根结点外的分枝结点统称为内部结点。
2.树的深度——组成该树各结点的最大层次。
3.森林——指若干棵互不相交的树的集合,如上图,去掉根结点A,其原来的二棵子树T1、T2、T3的集合{T1,T2,T3}就为森林;
4.有序树——指树中同层结点从左到右有次序排列,它们之间的次序不能互换,这样的树称为有序树,否则称为无序树。
树的表示
树的表示方法有许多,常用的方法是用括号:先将根结点放入一对圆括号中,然后把它的子树由左至右的顺序放入括号中,而对子树也采用同样的方法处理;同层子树与它的根结点用圆括号括起来,同层子树之间用逗号隔开,最后用闭括号括起来。如右图可写成如下形式:
二叉树
(a(
b(d,e),
c(
f(
,g(h,i)
),
)))
用java怎么构造一个二叉树?
二叉树的相关操作,包括创建,中序、先序、后序(递归和非递归),其中重点的是java在先序创建二叉树和后序非递归遍历的的实现。
package com.algorithm.tree;
import java.io.File;
import java.io.FileNotFoundException;
import java.util.Queue;
import java.util.Scanner;
import java.util.Stack;
import java.util.concurrent.LinkedBlockingQueue;
public class Tree {
private Node root;
public Tree() {
}
public Tree(Node root) {
this.root = root;
}
//创建二叉树
public void buildTree() {
Scanner scn = null;
try {
scn = new Scanner(new File("input.txt"));
} catch (FileNotFoundException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
root = createTree(root,scn);
}
//先序遍历创建二叉树
private Node createTree(Node node,Scanner scn) {
String temp = scn.next();
if (temp.trim().equals("#")) {
return null;
} else {
node = new Node((T)temp);
node.setLeft(createTree(node.getLeft(), scn));
node.setRight(createTree(node.getRight(), scn));
return node;
}
}
//中序遍历(递归)
public void inOrderTraverse() {
inOrderTraverse(root);
}
public void inOrderTraverse(Node node) {
if (node != null) {
inOrderTraverse(node.getLeft());
System.out.println(node.getValue());
inOrderTraverse(node.getRight());
}
}
//中序遍历(非递归)
public void nrInOrderTraverse() {
StackNode stack = new StackNode();
Node node = root;
while (node != null || !stack.isEmpty()) {
while (node != null) {
stack.push(node);
node = node.getLeft();
}
node = stack.pop();
System.out.println(node.getValue());
node = node.getRight();
}
}
//先序遍历(递归)
public void preOrderTraverse() {
preOrderTraverse(root);
}
public void preOrderTraverse(Node node) {
if (node != null) {
System.out.println(node.getValue());
preOrderTraverse(node.getLeft());
preOrderTraverse(node.getRight());
}
}
//先序遍历(非递归)
public void nrPreOrderTraverse() {
StackNode stack = new StackNode();
Node node = root;
while (node != null || !stack.isEmpty()) {
while (node != null) {
System.out.println(node.getValue());
stack.push(node);
node = node.getLeft();
}
node = stack.pop();
node = node.getRight();
}
}
//后序遍历(递归)
public void postOrderTraverse() {
postOrderTraverse(root);
}
public void postOrderTraverse(Node node) {
if (node != null) {
postOrderTraverse(node.getLeft());
postOrderTraverse(node.getRight());
System.out.println(node.getValue());
}
}
//后续遍历(非递归)
public void nrPostOrderTraverse() {
StackNode stack = new StackNode();
Node node = root;
Node preNode = null;//表示最近一次访问的节点
while (node != null || !stack.isEmpty()) {
while (node != null) {
stack.push(node);
node = node.getLeft();
}
node = stack.peek();
if (node.getRight() == null || node.getRight() == preNode) {
System.out.println(node.getValue());
node = stack.pop();
preNode = node;
node = null;
} else {
node = node.getRight();
}
}
}
//按层次遍历
public void levelTraverse() {
levelTraverse(root);
}
public void levelTraverse(Node node) {
QueueNode queue = new LinkedBlockingQueueNode();
queue.add(node);
while (!queue.isEmpty()) {
Node temp = queue.poll();
if (temp != null) {
System.out.println(temp.getValue());
queue.add(temp.getLeft());
queue.add(temp.getRight());
}
}
}
}
//树的节点
class Node {
private Node left;
private Node right;
private T value;
public Node() {
}
public Node(Node left,Node right,T value) {
this.left = left;
this.right = right;
this.value = value;
}
public Node(T value) {
this(null,null,value);
}
public Node getLeft() {
return left;
}
public void setLeft(Node left) {
this.left = left;
}
public Node getRight() {
return right;
}
public void setRight(Node right) {
this.right = right;
}
public T getValue() {
return value;
}
public void setValue(T value) {
this.value = value;
}
}
测试代码:
package com.algorithm.tree;
public class TreeTest {
/**
* @param args
*/
public static void main(String[] args) {
Tree tree = new Tree();
tree.buildTree();
System.out.println("中序遍历");
tree.inOrderTraverse();
tree.nrInOrderTraverse();
System.out.println("后续遍历");
//tree.nrPostOrderTraverse();
tree.postOrderTraverse();
tree.nrPostOrderTraverse();
System.out.println("先序遍历");
tree.preOrderTraverse();
tree.nrPreOrderTraverse();
//
}
}
java构建二叉树算法
//******************************************************************************************************//
//*****本程序包括简单的二叉树类的实现和前序,中序,后序,层次遍历二叉树算法,*******//
//******以及确定二叉树的高度,制定对象在树中的所处层次以及将树中的左右***********//
//******孩子节点对换位置,返回叶子节点个数删除叶子节点,并输出所删除的叶子节点**//
//*******************************CopyRight By phoenix*******************************************//
//************************************Jan 12,2008*************************************************//
//****************************************************************************************************//
public class BinTree {
public final static int MAX=40;
private Object data; //数据元数
private BinTree left,right; //指向左,右孩子结点的链
BinTree []elements = new BinTree[MAX];//层次遍历时保存各个节点
int front;//层次遍历时队首
int rear;//层次遍历时队尾
public BinTree()
{
}
public BinTree(Object data)
{ //构造有值结点
this.data = data;
left = right = null;
}
public BinTree(Object data,BinTree left,BinTree right)
{ //构造有值结点
this.data = data;
this.left = left;
this.right = right;
}
public String toString()
{
return data.toString();
}//前序遍历二叉树
public static void preOrder(BinTree parent){
if(parent == null)
return;
System.out.print(parent.data+" ");
preOrder(parent.left);
preOrder(parent.right);
}//中序遍历二叉树
public void inOrder(BinTree parent){
if(parent == null)
return;
inOrder(parent.left);
System.out.print(parent.data+" ");
inOrder(parent.right);
}//后序遍历二叉树
public void postOrder(BinTree parent){
if(parent == null)
return;
postOrder(parent.left);
postOrder(parent.right);
System.out.print(parent.data+" ");
}// 层次遍历二叉树
public void LayerOrder(BinTree parent)
{
elements[0]=parent;
front=0;rear=1;
while(frontrear)
{
try
{
if(elements[front].data!=null)
{
System.out.print(elements[front].data + " ");
if(elements[front].left!=null)
elements[rear++]=elements[front].left;
if(elements[front].right!=null)
elements[rear++]=elements[front].right;
front++;
}
}catch(Exception e){break;}
}
}//返回树的叶节点个数
public int leaves()
{
if(this == null)
return 0;
if(left == nullright == null)
return 1;
return (left == null ? 0 : left.leaves())+(right == null ? 0 : right.leaves());
}//结果返回树的高度
public int height()
{
int heightOfTree;
if(this == null)
return -1;
int leftHeight = (left == null ? 0 : left.height());
int rightHeight = (right == null ? 0 : right.height());
heightOfTree = leftHeightrightHeight?rightHeight:leftHeight;
return 1 + heightOfTree;
}
//如果对象不在树中,结果返回-1;否则结果返回该对象在树中所处的层次,规定根节点为第一层
public int level(Object object)
{
int levelInTree;
if(this == null)
return -1;
if(object == data)
return 1;//规定根节点为第一层
int leftLevel = (left == null?-1:left.level(object));
int rightLevel = (right == null?-1:right.level(object));
if(leftLevel0rightLevel0)
return -1;
levelInTree = leftLevelrightLevel?rightLevel:leftLevel;
return 1+levelInTree;
}
//将树中的每个节点的孩子对换位置
public void reflect()
{
if(this == null)
return;
if(left != null)
left.reflect();
if(right != null)
right.reflect();
BinTree temp = left;
left = right;
right = temp;
}// 将树中的所有节点移走,并输出移走的节点
public void defoliate()
{
String innerNode = "";
if(this == null)
return;
//若本节点是叶节点,则将其移走
if(left==nullright == null)
{
System.out.print(this + " ");
data = null;
return;
}
//移走左子树若其存在
if(left!=null){
left.defoliate();
left = null;
}
//移走本节点,放在中间表示中跟移走...
innerNode += this + " ";
data = null;
//移走右子树若其存在
if(right!=null){
right.defoliate();
right = null;
}
}
/**
* @param args
*/
public static void main(String[] args) {
// TODO Auto-generated method stub
BinTree e = new BinTree("E");
BinTree g = new BinTree("G");
BinTree h = new BinTree("H");
BinTree i = new BinTree("I");
BinTree d = new BinTree("D",null,g);
BinTree f = new BinTree("F",h,i);
BinTree b = new BinTree("B",d,e);
BinTree c = new BinTree("C",f,null);
BinTree tree = new BinTree("A",b,c);
System.out.println("前序遍历二叉树结果: ");
tree.preOrder(tree);
System.out.println();
System.out.println("中序遍历二叉树结果: ");
tree.inOrder(tree);
System.out.println();
System.out.println("后序遍历二叉树结果: ");
tree.postOrder(tree);
System.out.println();
System.out.println("层次遍历二叉树结果: ");
tree.LayerOrder(tree);
System.out.println();
System.out.println("F所在的层次: "+tree.level("F"));
System.out.println("这棵二叉树的高度: "+tree.height());
System.out.println("--------------------------------------");
tree.reflect();
System.out.println("交换每个节点的孩子节点后......");
System.out.println("前序遍历二叉树结果: ");
tree.preOrder(tree);
System.out.println();
System.out.println("中序遍历二叉树结果: ");
tree.inOrder(tree);
System.out.println();
System.out.println("后序遍历二叉树结果: ");
tree.postOrder(tree);
System.out.println();
System.out.println("层次遍历二叉树结果: ");
tree.LayerOrder(tree);
System.out.println();
System.out.println("F所在的层次: "+tree.level("F"));
System.out.println("这棵二叉树的高度: "+tree.height());
}
用java实现二叉树
我有很多个(假设10万个)数据要保存起来,以后还需要从保存的这些数据中检索是否存在某
个数据,(我想说出二叉树的好处,该怎么说呢?那就是说别人的缺点),假如存在数组中,
那么,碰巧要找的数字位于99999那个地方,那查找的速度将很慢,因为要从第1个依次往
后取,取出来后进行比较。平衡二叉树(构建平衡二叉树需要先排序,我们这里就不作考虑
了)可以很好地解决这个问题,但二叉树的遍历(前序,中序,后序)效率要比数组低很多,
public class Node {
public int value;
public Node left;
public Node right;
public void store(intvalue)
right.value=value;
}
else
{
right.store(value);
}
}
}
public boolean find(intvalue)
{
System.out.println("happen" +this.value);
if(value ==this.value)
{
return true;
}
else if(valuethis.value)
{
if(right ==null)returnfalse;
return right.find(value);
}else
{
if(left ==null)returnfalse;
return left.find(value);
}
}
public void preList()
{
System.out.print(this.value+ ",");
if(left!=null)left.preList();
if(right!=null) right.preList();
}
public void middleList()
{
if(left!=null)left.preList();
System.out.print(this.value+ ",");
if(right!=null)right.preList();
}
public void afterList()
{
if(left!=null)left.preList();
if(right!=null)right.preList();
System.out.print(this.value+ ",");
}
public static voidmain(String [] args)
{
int [] data =new int[20];
for(inti=0;idata.length;i++)
{
data[i] = (int)(Math.random()*100)+ 1;
System.out.print(data[i] +",");
}
System.out.println();
Node root = new Node();
root.value = data[0];
for(inti=1;idata.length;i++)
{
root.store(data[i]);
}
root.find(data[19]);
root.preList();
System.out.println();
root.middleList();
System.out.println();
root.afterList();
}
}
java 构建二叉树
首先我想问为什么要用LinkedList 来建立二叉树呢? LinkedList 是线性表,
树是树形的, 似乎不太合适。
其实也可以用数组完成,而且效率更高.
关键是我觉得你这个输入本身就是一个二叉树啊,
String input = "ABCDE F G";
节点编号从0到8. 层次遍历的话:
对于节点i.
leftChild = input.charAt(2*i+1); //做子树
rightChild = input.charAt(2*i+2);//右子树
如果你要将带有节点信息的树存到LinkedList里面, 先建立一个节点类:
class Node{
public char cValue;
public Node leftChild;
public Node rightChild;
public Node(v){
this.cValue = v;
}
}
然后遍历input,建立各个节点对象.
LinkedList tree = new LinkedList();
for(int i=0;i input.length;i++)
LinkedList.add(new Node(input.charAt(i)));
然后为各个节点设置左右子树:
for(int i=0;iinput.length;i++){
((Node)tree.get(i)).leftChild = (Node)tree.get(2*i+1);
((Node)tree.get(i)).rightChild = (Node)tree.get(2*i+2);
}
这样LinkedList 就存储了整个二叉树. 而第0个元素就是树根,思路大体是这样吧。
标题名称:java代码建立二叉树,创建二叉树的代码java
浏览地址:http://myzitong.com/article/hccipo.html