python填充函数,python填充算法
怎样用 Python 进行数据分析?
做数据分析,首先你要知道有哪些数据分析的方法,然后才是用Python去调用这些方法
创新互联致力于网站设计、做网站,成都网站设计,集团网站建设等服务标准化,推过标准化降低中小企业的建站的成本,并持续提升建站的定制化服务水平进行质量交付,让企业网站从市场竞争中脱颖而出。 选择创新互联,就选择了安全、稳定、美观的网站建设服务!
那Python有哪些库类是能做数据分析的,很多,pandas,sklearn等等
所以你首先要装一个anaconda套件,它包含了几乎所有的Python数据分析工具,
之后再学怎么分析。
python中怎么输入函数y=xtanx
1、首先,需要了解python中输入函数y=xtanx的作用。
2、其次,需要找到文件中的控制台。
3、最后,在控制台中输入函数y=xtanx即可。
python线性插值解析
在缺失值填补上如果用前后的均值填补中间的均值, 比如,0,空,1, 我们希望中间填充0.5;或者0,空,空,1,我们希望中间填充0.33,0.67这样。
可以用pandas的函数进行填充,因为这个就是线性插值法
df..interpolate()
dd=pd.DataFrame(data=[0,np.nan,np.nan,1])
dd.interpolate()
补充知识:线性插值公式简单推导
以上这篇python线性插值解析就是我分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
python有多少内置函数
Python内置函数有很多,为大家推荐5个神仙级的内置函数:
(1)Lambda函数
用于创建匿名函数,即没有名称的函数。它只是一个表达式,函数体比def简单很多。当我们需要创建一个函数来执行单个操作并且可以在一行中编写时,就可以用到匿名函数了。
Lamdba的主体是一个表达式,而不是一个代码块。仅仅能在lambda表达式中封装有限的逻辑进去。
利用Lamdba函数,往往可以将代码简化许多。
(2)Map函数
会将一个函数映射到一个输入列表的所有元素上,比如我们先创建了一个函数来返回一个大写的输入单词,然后将此函数应有到列表colors中的所有元素。
我们还可以使用匿名函数lamdba来配合map函数,这样可以更加精简。
(3)Reduce函数
当需要对一个列表进行一些计算并返回结果时,reduce()是个非常有用的函数。举个例子,当需要计算一个整数列表所有元素的乘积时,即可使用reduce函数实现。
它与函数的最大的区别就是,reduce()里的映射函数(function)接收两个参数,而map接收一个参数。
(4)enumerate函数
用于将一个可遍历的数据对象(如列表、元组或字符串)组合为一个索引序列,同时列出数据和数据下标,一般用在for循环当中。
它的两个参数,一个是序列、迭代器或其他支持迭代对象;另一个是下标起始位置,默认情况从0开始,也可以自定义计数器的起始编号。
(5)Zip函数
用于将可迭代的对象作为参数,将对象中对应的元素打包成一个个元组,然后返回由这些元组组成的列表
当我们使用zip()函数时,如果各个迭代器的元素个数不一致,则返回列表长度与最短的对象相同。
python做数据分析主要干哪些事情
第一、检查数据表
Python中使用shape函数来查看数据表的维度,也就是行数以及列数。你可以使用info函数来查看数据表的整体信息,使用dtype函数来返回数据格式;lsnull是Python中检验空值的函数,可以对整个数据表进行检查,也可以单独对某一行进行空值检查,返回的结构是逻辑值,包含空值返回true,不包含则返回false。
第二、数据清洗
Python可以进行数据清洗,Python中处理空值的方法比较灵活,可以使用Dropna函数用来删除数据表中包含空值的数据,也可以使用fillna函数对空值进行填充;Python中dtype是查看数据格式的函数,与之对应的是astype函数,用来更改数据格式,Rename是更改列名称的函数,drop_duplicates函数删除重复值,replace函数实现数据替换。
第三、数据提取
进行数据提取时,主要使用三个函数:loc、iloc以及ix。Loc函数按标签进行提取,iloc按位置进行提取,ix可以同时按照标签和位置进行提取。除了按标签和位置提取数据之外,还可以按照具体的条件进行提取,比如使用loc和isin两个函数配合使用。
第四、数据筛选
Python数据分析还可以进行数据筛选,Python中使用loc函数配合筛选条件来完成筛选功能,配合sum和count函数还能实现Excel中sumif和countif函数的功能。使用的主要函数是groupby和pivot_table;groupby是进行分类汇总的函数,使用方法比较简单,groupby按列名称出现的顺序进行分组。
Python基础 numpy中的常见函数有哪些
有些Python小白对numpy中的常见函数不太了解,今天小编就整理出来分享给大家。
Numpy是Python的一个科学计算的库,提供了矩阵运算的功能,其一般与Scipy、matplotlib一起使用。其实,list已经提供了类似于矩阵的表示形式,不过numpy为我们提供了更多的函数。
数组常用函数
1.where()按条件返回数组的索引值
2.take(a,index)从数组a中按照索引index取值
3.linspace(a,b,N)返回一个在(a,b)范围内均匀分布的数组,元素个数为N个
4.a.fill()将数组的所有元素以指定的值填充
5.diff(a)返回数组a相邻元素的差值构成的数组
6.sign(a)返回数组a的每个元素的正负符号
7.piecewise(a,[condlist],[funclist])数组a根据布尔型条件condlist返回对应元素结果
8.a.argmax(),a.argmin()返回a最大、最小元素的索引
改变数组维度
a.ravel(),a.flatten():将数组a展平成一维数组
a.shape=(m,n),a.reshape(m,n):将数组a转换成m*n维数组
a.transpose,a.T转置数组a
数组组合
1.hstack((a,b)),concatenate((a,b),axis=1)将数组a,b沿水平方向组合
2.vstack((a,b)),concatenate((a,b),axis=0)将数组a,b沿竖直方向组合
3.row_stack((a,b))将数组a,b按行方向组合
4.column_stack((a,b))将数组a,b按列方向组合
数组分割
1.split(a,n,axis=0),vsplit(a,n)将数组a沿垂直方向分割成n个数组
2.split(a,n,axis=1),hsplit(a,n)将数组a沿水平方向分割成n个数组
数组修剪和压缩
1.a.clip(m,n)设置数组a的范围为(m,n),数组中大于n的元素设定为n,小于m的元素设定为m
2.a.compress()返回根据给定条件筛选后的数组
数组属性
1.a.dtype数组a的数据类型
2.a.shape数组a的维度
3.a.ndim数组a的维数
4.a.size数组a所含元素的总个数
5.a.itemsize数组a的元素在内存中所占的字节数
6.a.nbytes整个数组a所占的内存空间7.a.astype(int)转换a数组的类型为int型
数组计算
1.average(a,weights=v)对数组a以权重v进行加权平均
2.mean(a),max(a),min(a),middle(a),var(a),std(a)数组a的均值、最大值、最小值、中位数、方差、标准差
3.a.prod()数组a的所有元素的乘积
4.a.cumprod()数组a的元素的累积乘积
5.cov(a,b),corrcoef(a,b)数组a和b的协方差、相关系数
6.a.diagonal()查看矩阵a对角线上的元素7.a.trace()计算矩阵a的迹,即对角线元素之和
以上就是numpy中的常见函数。更多Python学习推荐:PyThon学习网教学中心。
文章名称:python填充函数,python填充算法
链接URL:http://myzitong.com/article/hdsejo.html