python平移函数 python左移位运算
编程题:键盘输入一个字符串,然后键盘输入整数n,编写函数fun,将字符串中前n个元素平移到字符串的最后
方法一:
成都创新互联公司-专业网站定制、快速模板网站建设、高性价比武强网站开发、企业建站全套包干低至880元,成熟完善的模板库,直接使用。一站式武强网站制作公司更省心,省钱,快速模板网站建设找我们,业务覆盖武强地区。费用合理售后完善,十载实体公司更值得信赖。
void fun ( char *pstr, int steps )
{
int n = strlen( pstr ) - steps;
char tmp[max_len];
strcpy ( tmp, pstr + n );
strcpy ( tmp + steps, pstr);
*( tmp + strlen ( pstr ) ) = '\0';
strcpy( pstr, tmp );
}
方法二:
void fun( char *pstr, int steps )
{
int n = strlen( pstr ) - steps;
char tmp[max_len];
memncpy( tmp, pstr + n, steps );
memncpy(pstr + steps, pstr, n );
memncpy(pstr, tmp, steps );
}
主函数 输入 我相信楼主自己应该能解决,只是写了方法
。求分!!!
python数据分析与应用第三章代码3-5的数据哪来的
savetxt
import numpy as np
i2 = np.eye(2)
np.savetxt("eye.txt", i2)
3.4 读入CSV文件
# AAPL,28-01-2011, ,344.17,344.4,333.53,336.1,21144800
c,v=np.loadtxt('data.csv', delimiter=',', usecols=(6,7), unpack=True) #index从0开始
3.6.1 算术平均值
np.mean(c) = np.average(c)
3.6.2 加权平均值
t = np.arange(len(c))
np.average(c, weights=t)
3.8 极值
np.min(c)
np.max(c)
np.ptp(c) 最大值与最小值的差值
3.10 统计分析
np.median(c) 中位数
np.msort(c) 升序排序
np.var(c) 方差
3.12 分析股票收益率
np.diff(c) 可以返回一个由相邻数组元素的差
值构成的数组
returns = np.diff( arr ) / arr[ : -1] #diff返回的数组比收盘价数组少一个元素
np.std(c) 标准差
对数收益率
logreturns = np.diff( np.log(c) ) #应检查输入数组以确保其不含有零和负数
where 可以根据指定的条件返回所有满足条件的数
组元素的索引值。
posretindices = np.where(returns 0)
np.sqrt(1./252.) 平方根,浮点数
3.14 分析日期数据
# AAPL,28-01-2011, ,344.17,344.4,333.53,336.1,21144800
dates, close=np.loadtxt('data.csv', delimiter=',', usecols=(1,6), converters={1:datestr2num}, unpack=True)
print "Dates =", dates
def datestr2num(s):
return datetime.datetime.strptime(s, "%d-%m-%Y").date().weekday()
# 星期一 0
# 星期二 1
# 星期三 2
# 星期四 3
# 星期五 4
# 星期六 5
# 星期日 6
#output
Dates = [ 4. 0. 1. 2. 3. 4. 0. 1. 2. 3. 4. 0. 1. 2. 3. 4. 1. 2. 4. 0. 1. 2. 3. 4. 0.
1. 2. 3. 4.]
averages = np.zeros(5)
for i in range(5):
indices = np.where(dates == i)
prices = np.take(close, indices) #按数组的元素运算,产生一个数组作为输出。
a = [4, 3, 5, 7, 6, 8]
indices = [0, 1, 4]
np.take(a, indices)
array([4, 3, 6])
np.argmax(c) #返回的是数组中最大元素的索引值
np.argmin(c)
3.16 汇总数据
# AAPL,28-01-2011, ,344.17,344.4,333.53,336.1,21144800
#得到第一个星期一和最后一个星期五
first_monday = np.ravel(np.where(dates == 0))[0]
last_friday = np.ravel(np.where(dates == 4))[-1]
#创建一个数组,用于存储三周内每一天的索引值
weeks_indices = np.arange(first_monday, last_friday + 1)
#按照每个子数组5个元素,用split函数切分数组
weeks_indices = np.split(weeks_indices, 5)
#output
[array([1, 2, 3, 4, 5]), array([ 6, 7, 8, 9, 10]), array([11,12, 13, 14, 15])]
weeksummary = np.apply_along_axis(summarize, 1, weeks_indices,open, high, low, close)
def summarize(a, o, h, l, c): #open, high, low, close
monday_open = o[a[0]]
week_high = np.max( np.take(h, a) )
week_low = np.min( np.take(l, a) )
friday_close = c[a[-1]]
return("APPL", monday_open, week_high, week_low, friday_close)
np.savetxt("weeksummary.csv", weeksummary, delimiter=",", fmt="%s") #指定了文件名、需要保存的数组名、分隔符(在这个例子中为英文标点逗号)以及存储浮点数的格式。
0818b9ca8b590ca3270a3433284dd417.png
格式字符串以一个百分号开始。接下来是一个可选的标志字符:-表示结果左对齐,0表示左端补0,+表示输出符号(正号+或负号-)。第三部分为可选的输出宽度参数,表示输出的最小位数。第四部分是精度格式符,以”.”开头,后面跟一个表示精度的整数。最后是一个类型指定字符,在例子中指定为字符串类型。
numpy.apply_along_axis(func1d, axis, arr, *args, **kwargs)
def my_func(a):
... """Average first and last element of a 1-D array"""
... return (a[0] + a[-1]) * 0.5
b = np.array([[1,2,3], [4,5,6], [7,8,9]])
np.apply_along_axis(my_func, 0, b) #沿着X轴运动,取列切片
array([ 4., 5., 6.])
np.apply_along_axis(my_func, 1, b) #沿着y轴运动,取行切片
array([ 2., 5., 8.])
b = np.array([[8,1,7], [4,3,9], [5,2,6]])
np.apply_along_axis(sorted, 1, b)
array([[1, 7, 8],
[3, 4, 9],
[2, 5, 6]])
3.20 计算简单移动平均线
(1) 使用ones函数创建一个长度为N的元素均初始化为1的数组,然后对整个数组除以N,即可得到权重。如下所示:
N = int(sys.argv[1])
weights = np.ones(N) / N
print "Weights", weights
在N = 5时,输出结果如下:
Weights [ 0.2 0.2 0.2 0.2 0.2] #权重相等
(2) 使用这些权重值,调用convolve函数:
c = np.loadtxt('data.csv', delimiter=',', usecols=(6,),unpack=True)
sma = np.convolve(weights, c)[N-1:-N+1] #卷积是分析数学中一种重要的运算,定义为一个函数与经过翻转和平移的另一个函数的乘积的积分。
t = np.arange(N - 1, len(c)) #作图
plot(t, c[N-1:], lw=1.0)
plot(t, sma, lw=2.0)
show()
3.22 计算指数移动平均线
指数移动平均线(exponential moving average)。指数移动平均线使用的权重是指数衰减的。对历史上的数据点赋予的权重以指数速度减小,但永远不会到达0。
x = np.arange(5)
print "Exp", np.exp(x)
#output
Exp [ 1. 2.71828183 7.3890561 20.08553692 54.59815003]
Linspace 返回一个元素值在指定的范围内均匀分布的数组。
print "Linspace", np.linspace(-1, 0, 5) #起始值、终止值、可选的元素个数
#output
Linspace [-1. -0.75 -0.5 -0.25 0. ]
(1)权重计算
N = int(sys.argv[1])
weights = np.exp(np.linspace(-1. , 0. , N))
(2)权重归一化处理
weights /= weights.sum()
print "Weights", weights
#output
Weights [ 0.11405072 0.14644403 0.18803785 0.24144538 0.31002201]
(3)计算及作图
c = np.loadtxt('data.csv', delimiter=',', usecols=(6,),unpack=True)
ema = np.convolve(weights, c)[N-1:-N+1]
t = np.arange(N - 1, len(c))
plot(t, c[N-1:], lw=1.0)
plot(t, ema, lw=2.0)
show()
3.26 用线性模型预测价格
(x, residuals, rank, s) = np.linalg.lstsq(A, b) #系数向量x、一个残差数组、A的秩以及A的奇异值
print x, residuals, rank, s
#计算下一个预测值
print np.dot(b, x)
3.28 绘制趋势线
x = np.arange(6)
x = x.reshape((2, 3))
x
array([[0, 1, 2], [3, 4, 5]])
np.ones_like(x) #用1填充数组
array([[1, 1, 1], [1, 1, 1]])
类似函数
zeros_like
empty_like
zeros
ones
empty
3.30 数组的修剪和压缩
a = np.arange(5)
print "a =", a
print "Clipped", a.clip(1, 2) #将所有比给定最大值还大的元素全部设为给定的最大值,而所有比给定最小值还小的元素全部设为给定的最小值
#output
a = [0 1 2 3 4]
Clipped [1 1 2 2 2]
a = np.arange(4)
print a
print "Compressed", a.compress(a 2) #返回一个根据给定条件筛选后的数组
#output
[0 1 2 3]
Compressed [3]
b = np.arange(1, 9)
print "b =", b
print "Factorial", b.prod() #输出数组元素阶乘结果
#output
b = [1 2 3 4 5 6 7 8]
Factorial 40320
print "Factorials", b.cumprod()
#output
怎么用python实现一个坐标图的平移和缩放
最容易想到的应该是DP算法,即取初始轨迹的起点A和终点B连线,计算每个点到这条线的距离,距离最大的点C若小于要求误差则结束;
否则将C点加入压缩后的数据集,对AC和CB重复以上过程直至满足误差要求。
【Python基础】python数据分析需要哪些库?
1.Numpy库
是Python开源的数值计算扩展工具,提供了Python对多维数组的支持,能够支持高级的维度数组与矩阵运算。此外,针对数组运算也提供了大量的数学函数库,Numpy是大部分Python科学计算的基础,具有很多功能。
2.Pandas库
是一个基于Numpy的数据分析包,为了解决数据分析任务而创建的。Pandas中纳入了大量库和标准的数据模型,提供了高效地操作大型数据集所需要的函数和方法,使用户能快速便捷地处理数据。
3.Matplotlib库
是一个用在Python中绘制数组的2D图形库,虽然它起源于模仿MATLAB图形命令,但它独立于MATLAB,可以通过Pythonic和面向对象的方式使用,是Python中最出色的绘图库。主要用纯Python语言编写的,它大量使用Numpy和其他扩展代码,即使对大型数组也能提供良好的性能。
4.Seaborn库
是Python中基于Matplotlib的数据可视化工具,提供了很多高层封装的函数,帮助数据分析人员快速绘制美观的数据图形,从而避免了许多额外的参数配置问题。
5.NLTK库
被称为使用Python进行教学和计算语言学工作的最佳工具,以及用自然语言进行游戏的神奇图书馆。NLTK是一个领先的平台,用于构建使用人类语言数据的Python程序,它为超过50个语料库和词汇资源提供了易于使用的接口,还提供了一套文本处理库,用于分类、标记化、词干化、解析和语义推理、NLP库的包装器和一个活跃的讨论社区。
转《python 位操作符 左移和右移 运算》
左移和右移N位等同于无溢出检查的2的N次幂运算:2**N
运算规则:
按二进制形式把所有的数字向左移动对应的位数,高位移出(舍弃),低位的空位补零。
语法格式:
需要移位的数字移位的位数
例如:32则是将数字3左移动2位
计算过程:
32首先把3转换为二进制数字00000000000000000000000000000011
然后把该数字高位(左侧)的两个零移出,其他的数字都朝左平移2位,最后在低位(右侧)
的连个空位补零。则得到的结果是00000000000000000000000000001100,
则转换为十进制是12
运算规则:
按二进制形式把所有的数字向右移动对应的位数,低位移出(舍弃),高位的空位补符号位
即正数补0,负数补1
语法规则:
需要移位的数字移位的次数
例如:112则是将数字11右移2位
计算过程:
11的二进制形式为:00000000000000000000000000001011然后把低位的最
后两个数字移出,因为该数字是正数,所以在高位补0,则得到的最终的二进制结果为:
00000000000000000000000000000010转换为十进制数为3
转自 。
分享标题:python平移函数 python左移位运算
网站URL:http://myzitong.com/article/hejioh.html