包含python函数式对象的词条
python函数是对象吗
python中,所有的元素都是对象,其中第一类对象的通用特性:可作为值传递,赋值给另一个对象;可以作为元素添加到集合对象中;可以作为参数传递给其他函数;可以作为函数的返回值
成都创新互联公司专业为企业提供乌海网站建设、乌海做网站、乌海网站设计、乌海网站制作等企业网站建设、网页设计与制作、乌海企业网站模板建站服务,十载乌海做网站经验,不只是建网站,更提供有价值的思路和整体网络服务。
python函数传对象对性能的影响
python函数传对象对性能有影响。在Python中,一切皆对象,Python参数传递采用的都是“传对象引用”的方式。实际上,这种方式相当于传值和传引用的一种综合。如果函数收到的是一个可变对象(比如字典或者列表)的引用,就能修改对象的原始值,相当于通过“传引用”来传递对象。如果函数收到的是一个不可变对象(比如数字、字符或者元组)的引用,就不能直接修改原始对象,相当于通过“传值’来传递对象,此时如果想改变这些变量的值,可以将这些变量申明为全局变量。
Python对象
众所周知,Python是一门面向对象的语言,在Python无论是数值、字符串、函数亦或是类型、类,都是对象。
对象是在 堆 上分配的结构,我们定义的所有变量、函数等,都存储于堆内存,而变量名、函数名则是一个存储于 栈 中、指向堆中具体结构的引用。
要想深入学习Python,首先需要知道Python对象的定义。
我们通常说的Python都是指CPython,底层由C语言实现,源码地址: cpython [GitHub]
Python对象的定义位于 Include/object.h ,是一个名为 PyObject 的结构体:
Python中的所有对象都继承自PyObejct,PyObject包含一个用于垃圾回收的双向链表,一个引用计数变量 ob_refcnt 和 一个类型对象指针 ob_type
从PyObejct的注释中,我们可以看到这样一句:每个指向 可变大小Python对象 的指针也可以转换为 PyVarObject* (可变大小的Python对象会在下文中解释)。 PyVarObejct 就是在PyObject的基础上多了一个 ob_size 字段,用于存储元素个数:
在PyObject结构中,还有一个类型对象指针 ob_type ,用于表示Python对象是什么类型,定义Python对象类型的是一个 PyTypeObject 接口体
实际定义是位于 Include/cpython/object.h 的 _typeobject :
在这个类型对象中,不仅包含了对象的类型,还包含了如分配内存大小、对象标准操作等信息,主要分为:
以Python中的 int类型 为例,int类型对象的定义如下:
从PyObject的定义中我们知道,每个对象的 ob_type 都要指向一个具体的类型对象,比如一个数值型对象 100 ,它的ob_type会指向 int类型对象PyLong_Type 。
PyTypeObject结构体第一行是一个PyObject_VAR_HEAD宏,查看宏定义可知PyTypeObject是一个变长对象
也就是说,归根结底 类型对象也是一个对象 ,也有ob_type属性,那 PyLong_Type 的 ob_type 是什么呢?
回到PyLong_Type的定义,第一行 PyVarObject_HEAD_INIT(PyType_Type, 0) ,查看对应的宏定义
由以上关系可以知道, PyVarObject_HEAD_INIT(PyType_Type, 0) = { { _PyObject_EXTRA_INIT 1, PyType_Type } 0} ,将其代入 PyObject_VAR_HEAD ,得到一个变长对象:
这样看就很明确了,PyLong_Type的类型就是PyType_Typ,同理可知, Python类型对象的类型就是PyType_Type ,而 PyType_Type对象的类型是它本身
从上述内容中,我们知道了对象和对象类型的定义,那么根据定义,对象可以有以下两种分类
Python对象定义有 PyObject 和 PyVarObject ,因此,根据对象大小是否可变的区别,Python对象可以划分为 可变对象(变长对象) 和 不可变对象(定长对象)
原本的对象a大小并没有改变,只是s引用的对象改变了。这里的对象a、对象b就是定长对象
可以看到,变量l仍然指向对象a,只是对象a的内容发生了改变,数据量变大了。这里的对象a就是变长对象
由于存在以上特性,所以使用这两种对象还会带来一种区别:
声明 s2 = s ,修改s的值: s = 'new string' ,s2的值不会一起改变,因为只是s指向了一个新的对象,s2指向的旧对象的值并没有发生改变
声明 l2 = l ,修改l的值: l.append(6) ,此时l2的值会一起改变,因为l和l2指向的是同一个对象,而该对象的内容被l修改了
此外,对于 字符串 对象,Python还有一套内存复用机制,如果两个字符串变量值相同,那它们将共用同一个对象:
对于 数值型 对象,Python会默认创建0~2 8 以内的整数对象,也就是 0 ~ 256 之间的数值对象是共用的:
按照Python数据类型,对象可分为以下几类:
Python创建对象有两种方式,泛型API和和类型相关的API
这类API通常以 PyObject_xxx 的形式命名,可以应用在任意Python对象上,如:
使用 PyObjecg_New 创建一个数值型对象:
这类API通常只能作用于一种类型的对象上,如:
使用 PyLong_FromLong 创建一个数值型对象:
在我们使用Python声明变量的时候,并不需要为变量指派类型,在给变量赋值的时候,可以赋值任意类型数据,如:
从Python对象的定义我们已经可以知晓造成这个特点的原因了,Python创建对象时,会分配内存进行初始化,然后Python内部通过 PyObject* 变量来维护这个对象,所以在Python内部各函数直接传递的都是一种泛型指针 PyObject* ,这个指针所指向的对象类型是不固定的,只能通过所指对象的 ob_type 属性动态进行判断,而Python正是通过 ob_type 实现了多态机制
Python在管理维护对象时,通过引用计数来判断内存中的对象是否需要被销毁,Python中所有事物都是对象,所有对象都有引用计数 ob_refcnt 。
当一个对象的引用计数减少到0之后,Python将会释放该对象所占用的内存和系统资源。
但这并不意味着最终一定会释放内存空间,因为频繁申请释放内存会大大降低Python的执行效率,因此Python中采用了内存对象池的技术,是的对象释放的空间会还给内存池,而不是直接释放,后续需要申请空间时,优先从内存对象池中获取。
Python有哪些技术上的优点?比其他语言好在哪儿?
Python有哪些技术上的优点
1. 面向对象和函数式
从根本上讲,Python是一种面向对象的语言。它的类模型支持多态、运算符重载和多重继承等高级概念,并且以Python特有的简洁的语法和类型为背景,OOP十分易于使用。事实上,即使你不懂这些术语,仍会发现学习Python比学习其他OOP语言要容易得多。
除了作为一种强大的代码组织和重用手段以外,Python的OOP本质使它成为其他面向对象系统语言的理想脚本工具。例如,通过适当的粘接代码,Python程序可以对C++、Java和C#的类进行子类的定制。
OOP只是Python的一个选择而已,这一点非常重要。即使不能立马成为一个面向对象高手,但你同样可以继续深入学习。就像C++一样,Python既支持面向对象编程也支持面向过程编程的模式。如果条件允许,其面向对象的工具可以立即派上用场。这对策略开发模式十分有用,该模式常用于软件开发的设计阶段。
除了最初的过程式(语句为基础)和面向对象(类为基础)的编程范式,Python在最近几年内置了对函数式编程的支持——一个多数情况下包括生成器、推导、闭包、映射、装饰器、匿名lambda函数和第一类函数对象的集合。这是对其本身OOP工具的补充和替代。
2. 免费
Python的使用和分发是完全免费的。就像其他的开源软件一样,例如,Tcl、Perl、Linux和Apache。你可以从Internet上免费获得Python的源代码。你可以不受限制地复制Python,或将其嵌入你的系统或者随产品一起发布。实际上,如果你愿意的话,甚至可以销售它的源代码。
但请别误会:“免费”并不代表“没有支持”。恰恰相反,Python的在线社区对用户需求的响应和商业软件一样快。而且,由于Python完全开放源代码,提高了开发者的实力,并产生了一个很大的专家团队。
尽管研究或改变一种程序语言的实现并不是对每一个人来说都那么有趣,但是当你知道如果需要的话可以做到这些,该是多么的令人欣慰。你不需要去依赖商业厂商的智慧,因为最终的文档和终极的净土(源码)任凭你的使用。
Python的开发是由社区驱动的,是Internet大范围的协同合作努力的结果。Python语言的改变必须遵循一套规范而有约束力的程序(称作PEP流程),并需要经过规范的测试系统进行彻底检查。正是这样才使得Python相对于其他语言和系统可以保守地持续改进。
尽管Python 2.X和Python 3.X版本之间的分裂有力并蓄意地破坏了这项传统,但通常它仍然体现在Python的这两个系列内部。
3. 可移植
Python的标准实现是由可移植的ANSI C编写的,可以在目前所有主流平台上编译和运行。例如,如今从掌上电脑(PDA)到超级计算机,随处可见 Python的运行。Python可以在下列平台上运行(这里只是部分列表):
Linux和UNIX系统
微软Windows(所有现代版本)
Mac OS(包括OS X 和经典版)
BeOS、OS/2、VMS和QNX
实时操作系统,例如VxWorks
Cray超级计算机和IBM大型机
运行Palm OS、PocketPC和Linux的PDA
运行 Symbian OS和Windows Mobile 的移动电话
游戏终端和iPod
运行谷歌安卓系统和苹果iOS系统的平板和智能手机
以及更多
除了语言解释器本身以外,Python发行时自带的标准库和模块在实现上也都尽可能地考虑到了跨平台的移植性。此外,Python程序自动编译成可移植的字节码,这些字节码在已安装兼容版本Python的平台上运行的结果都是相同的。
这些意味着Python程序的核心语言和标准库可以在Linux、Windows和其他带有Python解释器的平台上无差别地运行。大多数Python外围接口都有平台相关的扩展(例如COM支持Windows),但是核心语言和库在任何平台都一样。
就像之前我们提到的那样,Python还包含了一个叫作tkinter(Tkinter的2.X版本)的Tk GUI工具包,它可以使Python程序实现功能完整的,无须做任何修改即可在所有主流GUI桌面平台运行的用户图形界面。
4. 功能强大
从语言特性的角度来看,Python是一个混合体。它丰富的工具集使它介于传统的脚本语言(如Tcl、Scheme和Perl)和系统语言(如C、C++和Java)之间。Python提供了所有脚本语言的简单和易用性,并且具有那些在编译语言中才能找到的高级软件工程工具。
不像其他脚本语言不同,这种结合使Python在长期大型的开发项目中十分有用。下面是一些Python工具箱中的工具简介:
动态类型
Python在程序运行过程中跟踪对象的类型,不需要代码中进行关于复杂的类型和大小的声明。事实上,Python中没有类型或变量声明这种做法。因为Python代码不约束数据的类型,它往往自动地应用了一种广义上的对象。
自动内存管理
Python自动为对象分配空间,并且当对象不再使用时将自动撤销空间(“垃圾回收”),当需要时自动扩展或收缩。正如你将学到的,Python能够帮你完成底层的内存管理。
大型程序支持
为了能建立更大规模的系统,Python包含了模块、类和异常等工具。这些工具允许你把系统组织为组件,使用OOP重用并定制代码,并以一种优雅的方式处理事件和错误。前面提到的Python函数式编程工具,提供了实现相同目标的其他方法。
内置对象类型
Python提供了常用的数据结构作为语言的基本组成部分。例如,列表(list)、字典(dictionary)、字符串(string)。我们将会看到,它们灵活并易于使用。例如,内置对象可以根据需求扩展或收缩,可以任意地组织复杂的信息等。
内置工具
为了对以上对象类型进行处理,Python自带了许多强大的标准操作,包括拼接(concatenation)、分片(slice)、排序(sort)和映射(mapping)等。
库工具
为了完成更多特定的任务,Python预置了许多预编码的库工具,从正则表达式匹配到网络都支持。当你掌握了语言本身,就能在应用级的操作中使用Python的库工具。
第三方工具
由于Python是开源的,它鼓励开发者提供Python内置工具之外的预编码工具。你可以在网上找到COM、图像处理、数值编程、XML、数据库访问等许多免费的支持工具。
除了这一系列的Python工具外,Python保持了相当简洁的语法和设计。综合这一切得到的就是一个具有脚本语言所有可用性的强大编程工具。
请点击输入图片描述
5. 可混合
Python程序可以以多种方式轻易地与其他语言编写的组件“粘接”在一起。例如,Python的C语言API可以帮助Python程序灵活地调用C程序。这意味着可以根据需要给Python程序添加功能,或者在其他环境系统中使用Python。
例如,将Python与C或者C++写成的库文件混合起来,使Python成为一个前端语言和定制工具。就像之前我们所提到过的那样,这使Python成为一个很好的快速原型工具;系统可以在开发初期出于速度考虑使用Python实现,然后转移至C,根据不同时期性能的需要逐步实现系统。
6. 相对简单易用
同其他语言(如C++、Java和C#)相比,Python编程对大多数用户来讲出奇得简单。要运行Python程序,你只需简单地键入Python程序并运行就可以了。不需要其他语言(如C或C++)所必需的编译和链接等中间步骤。
Python可立即执行程序,这形成了一种交互式编程体验和不同情况下快速调整的能力,往往在修改代码后几乎能立即看到程序改变后的效果。
当然,开发周期短仅仅是Python易用性的一方面的体现。Python提供了简洁的语法和强大的内置工具。实际上,Python曾被称为“可执行的伪代码”。由于它减少了其他工具常见的复杂性,在实现相同的功能时,Python程序比采用其他流行语言编写的程序更为简单、小巧,也更灵活。
请点击输入图片描述
7. 相对简单易学
这一部分引出了本书的重点:尤其同其他广泛使用的编程语言比较时,Python语言的核心相当简单易学。实际上,如果你是一位有经验的程序员,你可以期望在几天内写出小规模的Python代码,你也许能在几个小时之内习得Python的一招一式,但是你并不能指望在如此短的时间内成为专家(忘掉市面上的那些宣传广告吧)。
当然,掌握任何像今天Python这样的充实主题都不是一件轻松事,我们将在本书的剩余部分致力于此项任务。但是为了掌握Python而进行的真正投资是非常值得的——最终你会获取几乎在每个计算机应用程序领域都适用的编程技能。此外,很多人还发现Python的学习曲线比其他的编程语言更加平缓。
这对于那些想学习语言以在工作中应用的专业人员来说是一个好消息,同样对于那些使用Python层进行定制和控制的系统的终端用户来说,也是一个好消息。如今,许多系统都依赖于这一事实:用户可以在没有或者得到很少支持的情况下就学到足够的Python知识以便当场增删他们的Python定制化代码。
此外,Python还孕育出一群不以编程为生而以编程为乐的用户,他们并不需要掌握全面的软件开发技巧。尽管Python还是有很多高级编程工具,但不论对初学者还是行家来说,Python的核心语言精髓仍是相当简单的。
8. 以Monty Python命名
好的,在讲完这么多技术方面的优势后,我想再揭露一个Python世界里面令人惊奇而保守良好的小秘密。
尽管Python的书和图标中有很多爬行动物,真相却是Python以英国喜剧组“Monty Python”命名——这是BBC 在20世纪70年代喜剧《Monty Python's Flying Circus》的制片方,也是至今仍在流行的少量包括《Monty Python and the Holy Grai》在内的大电影的制片方。Python的最初创作者是Monty Python的粉丝,这同其他许多的软件开发者一样(事实上,这两个领域存在某种对称性……)。
请点击输入图片描述
▲《Python学习手册》书封上的爬行动物
这段有趣的历史无疑增加了Python代码例子的幽默属性。例如,作为一般变量名命名传统的“foo”和“bar”在Python世界中变成了“spam”和“eggs”。而在Python中偶尔出现的“Brian”,“ni”和“shrubbery”表现得也同此类似。它甚至影响了Python的整个社区。
当然了,如果你对这部喜剧非常熟悉,就能体会这其中的笑点,但如果不熟悉则相反。你不必非得熟悉Monty Python这部剧来了解从剧中获得灵感的例子(包括你将在本书中看到的许多例子),但至少你现在知道它们的起源了。(嗨——我已经告诉你啦。)
02
Python和其他语言比较起来怎么样
最后,你也许已经知道了,人们往往将Python与Perl、Tcl和Javat等语言相比较。这部分总结这方面的一些普遍共识。
我想预先表明我个人并不喜欢通过诋毁竞争者来获胜——这在长期是行不通的,而且也不是这里的目的。此外,这并不是一场零和游戏——绝大多数的程序员在他们的职业生涯中都会使用许多语言。尽管如此,编程工具也展示出值得考虑的选择和权衡。毕竟,如果Python没有比它的竞争者提供更多的东西,那么它一开始就不会被人们使用了。
请点击输入图片描述
我们之前已经介绍过性能上的权衡,那么这里重点谈一下功能。尽管下面列举的这些语言也是值得学习和使用的有力工具,但人们通常认为Python:
比Tcl强大。Python强有力地支持“大规模编程”,使其适用于开发大型系统,它的应用程序库也更加丰富。
比Perl更具可读性。Python有着简洁的语法和简单连贯的设计,这反过来使得Python更具可读性和更易于维护,同时有助于减少程序bug。
比Java和C#更简单、更易于使用。Python是一门脚本语言,但Java和C#两者从像C++这样更加大型的OOP系统语言中继承了许多语法和复杂性。
比C++更简单、更易于使用。Python代码比等效的C++代码更加简单,长度只有其五分之一到三分之一。尽管作为脚本语言,Python有时能扮演许多不同的角色。
比C更加简单和高级。Python远离底层硬件架构从而降低了代码复杂性,拥有更好的组织结构,并比C(C++的祖先)更加友善。
比Visual Basic更强大,用途广泛,也更具备跨平台特性。Python是更加广泛使用的更丰富的语言,它的开源本质意味着它不可能被某一个公司所掌控。
比PHP更易懂并且用途更广。Python也用来构建Web站点,但是,它也应用于几乎每个计算机领域,从机器人到电影动画和游戏。
比JavaScript更强大和用途广泛。Python有一个更大的工具集,也并不是牢牢地束缚于Web开发。它也用于科学建模、仪器调试等。
比Ruby更具可读性,并更为人们所接受。Python的语法混乱更少,尤其在较复杂代码中,同时它的OOP对用户和和不太使用OOP的工程中是完全可选的。
比Lua更成熟和受到更广泛关注。Python更加庞大的特性集合和更加扩展的库支持给予其比Lua(一门和Tcl一样的嵌入式“胶水”语言)更加宽广的视野。
比SmallTalk、Lisp和Prolog更不晦涩。Python拥有这类函数式语言的动态品味,但是也拥有开发者和定制系统终端用户都可接受的传统语法。
特别是对不仅仅用于个人扫描文本文件,未来会被人们(包括你在内)读到的程序而言,很多人会发现Python比目前任何可用的脚本或编程语言都划得来。不仅如此,除非你的应用要求最尖端的性能,Python往往是C、C++和Java等系统开发语言的一个不错的替代品:Python代码能够常常实现相同的目标,却会减少很多编写、调试和维护的麻烦。
当然,本文作者从1992年就已经是Python的正式布道者了,所以尽可能接受这些意见吧(其他语言的拥护者的利益可能会受到些损失)。然而,所有这些观点的确代表了投入时间和精力来探索Python的众多开发者的一致看法。
关于作者:Mark Lutz是一位世界级的Python培训讲师。他是Python畅销书籍的作者,同时从1992年起就成为Python社区的引领者,有着30余年的软件开发经验。
本文摘编自《Python学习手册》(原书第5版),经出版方授权发布。
请点击输入图片描述
本文题目:包含python函数式对象的词条
本文链接:http://myzitong.com/article/hheiig.html