pythonc函数库 c++ python库
Python中的库都有哪些?
标准库
让客户满意是我们工作的目标,不断超越客户的期望值来自于我们对这个行业的热爱。我们立志把好的技术通过有效、简单的方式提供给客户,将通过不懈努力成为客户在信息化领域值得信任、有价值的长期合作伙伴,公司提供的服务项目有:域名注册、网站空间、营销软件、网站建设、濠江网站维护、网站推广。
sys
系统相关的参数和函数。 sys 库一般用来访问和修改系统相关信息,比如查看 python 版本、系统环境变量、模块信息和 python 解释器相关信息等等。
os
操作系统接口模块。这个库提供了访问操作系统相关依赖的方式,比如输入输出操作、读写操作、操作系统异常错误信息、进程线程管理、文件管理、调度程序等等。
re
正则表达式操作。这个库是我喜欢并且经常会用到的库,在对大量字符串进行处理的时候用正则表达式是最快速有效的方式,但是正则表达式的学习曲线较高,有兴趣的朋友可以访问这个网站学习。
math
数学函数库。 math 库提供了对 C 语言标准定义的数学函数访问,比如数论(Number-theoretic)的各种表示方法、幂和对数函数(Power and logarithmic functions)、三角函数(Trigonometric functions)、常量圆周率(π)和自然常数(e)等等。
random
生成伪随机数。
伪随机数与随机数(真随机数)不同的是执行环境,随机数是真实世界中通过物理过程实践得出结论,而伪随机数是通过计算机的特定算法生成的数,所以这个过程是可预测的、有规律的,只是循环周期较长,并不能与现实场景相切合。
random库提供生成随机数,可以模拟现实世界中随机取数、随机抽奖等等。望采纳
python调用c函数
Python是解释性语言, 底层就是用c实现的, 所以用python调用C是很容易的, 下面就总结一下各种调用的方法, 给出例子, 所有例子都在ubuntu9.10, python2.6下试过
1. Python 调用 C (base)
想在python中调用c函数, 如这儿的fact
#include Python.h
int fact(int n)
{
if (n = 1)
return 1;
else
return n * fact(n - 1);
}
PyObject* wrap_fact(PyObject* self, PyObject* args)
{
int n, result;
if (! PyArg_ParseTuple(args, "i:fact", n))
return NULL;
result = fact(n);
return Py_BuildValue("i", result);
}
static PyMethodDef exampleMethods[] =
{
{"fact", wrap_fact, METH_VARARGS, "Caculate N!"},
{NULL, NULL}
};
void initexample()
{
PyObject* m;
m = Py_InitModule("example", exampleMethods);
}
把这段代码存为wrapper.c, 编成so库,
gcc -fPIC wrapper.c -o example.so -shared -I/usr/include/python2.6 -I/usr/lib/python2.6/config
然后在有此so库的目录, 进入python, 可以如下使用
import example
example.fact(4)
2. Python 调用 C++ (base)
在python中调用C++类成员函数, 如下调用TestFact类中的fact函数,
#include Python.h
class TestFact{
public:
TestFact(){};
~TestFact(){};
int fact(int n);
};
int TestFact::fact(int n)
{
if (n = 1)
return 1;
else
return n * (n - 1);
}
int fact(int n)
{
TestFact t;
return t.fact(n);
}
PyObject* wrap_fact(PyObject* self, PyObject* args)
{
int n, result;
if (! PyArg_ParseTuple(args, "i:fact", n))
return NULL;
result = fact(n);
return Py_BuildValue("i", result);
}
static PyMethodDef exampleMethods[] =
{
{"fact", wrap_fact, METH_VARARGS, "Caculate N!"},
{NULL, NULL}
};
extern "C" //不加会导致找不到initexample
void initexample()
{
PyObject* m;
m = Py_InitModule("example", exampleMethods);
}
把这段代码存为wrapper.cpp, 编成so库,
g++ -fPIC wrapper.cpp -o example.so -shared -I/usr/include/python2.6 -I/usr/lib/python2.6/config
然后在有此so库的目录, 进入python, 可以如下使用
import example
example.fact(4)
3. Python 调用 C++ (Boost.Python)
Boost库是非常强大的库, 其中的python库可以用来封装c++被python调用, 功能比较强大, 不但可以封装函数还能封装类, 类成员.
首先在ubuntu下安装boost.python, apt-get install libboost-python-dev
#include boost/python.hpp
char const* greet()
{
return "hello, world";
}
BOOST_PYTHON_MODULE(hello)
{
using namespace boost::python;
def("greet", greet);
}
把代码存为hello.cpp, 编译成so库
g++ hello.cpp -o hello.so -shared -I/usr/include/python2.5 -I/usr/lib/python2.5/config -lboost_python-gcc42-mt-1_34_1
此处python路径设为你的python路径, 并且必须加-lboost_python-gcc42-mt-1_34_1, 这个库名不一定是这个, 去/user/lib查
然后在有此so库的目录, 进入python, 可以如下使用
import hello
hello.greet()
'hello, world'
4. python 调用 c++ (ctypes)
ctypes is an advanced ffi (Foreign Function Interface) package for Python 2.3 and higher. In Python 2.5 it is already included.
ctypes allows to call functions in dlls/shared libraries and has extensive facilities to create, access and manipulate simple and complicated C data types in Python - in other words: wrap libraries in pure Python. It is even possible to implement C callback functions in pure Python.
#include Python.h
class TestFact{
public:
TestFact(){};
~TestFact(){};
int fact(int n);
};
int TestFact::fact(int n)
{
if (n = 1)
return 1;
else
return n * (n - 1);
}
extern "C"
int fact(int n)
{
TestFact t;
return t.fact(n);
}
将代码存为wrapper.cpp不用写python接口封装, 直接编译成so库,
g++ -fPIC wrapper.cpp -o example.so -shared -I/usr/include/python2.6 -I/usr/lib/python2.6/config
进入python, 可以如下使用
import ctypes
pdll = ctypes.CDLL('/home/ubuntu/tmp/example.so')
pdll.fact(4)
12
python库有哪些
Python比较常见的库有:Arrow、Behold、Click、Numba、Matlibplot、Pillow等:
1、Arrow
Python中处理时间的库有datetime,但是它过于简单,使用起来不够方便和智能,而Arrow可以说非常的方便和智能。它可以轻松地定位几个小时之前的时间,可以轻松转换时区时间,对于一个小时前,2个小时之内这样人性化的信息也能够准确解读。
2、Behold
调试程序是每个程序员必备的技能,对于脚本语言,很多人习惯于使用print进行调试,然而对于大项目来说,print的功能还远远不足,我们希望有一个可以轻松使用,调试方便,对变量监视完整,格式已于查看的工具,而Behold就是那个非常好用的调试库。
3、Click
现在几乎所有的框架都有自己的命令行脚手架,Python也不例外,那么如何快速开发出属于自己的命令行程序呢?答案就是使用Python的Click库。Click库对命令行api进行了大量封装,你可以轻松开发出属于自己的CLI命令集。终端的颜色,环境变量信息,通过Click都可以轻松进行获取和改变。
4、Numba
如果你从事数学方面的分析和计算,那么Numba一定是你必不可少的库。Numpy通过将高速C库包装在Python接口中来工作,而Cython使用可选的类型将Python编译为C以提高性能。但是Numba无疑是最方便的,因为它允许使用装饰器选择性地加速Python函数。
5、Matlibplot
做过数据分析,数据可视化的数学学生一定知道matlab这个软件,这是一个收费的数学商用软件,在Python中,Matlibplot就是为了实现这个软件中功能开发的第三方Python库。并且它完全是免费的,很多学校都是用它来进行数学教学和研究的。
6、Pillow
图像处理是任何时候我们都需要关注的问题,平时我们看到很多ps中的神技,比如调整画面颜色,饱和度,调整图像尺寸,裁剪图像等等,这些其实都可以通过Python简单完成,而其中我们需要使用的库就是Pillow。
7、pyqt5
Python是可以开发图形界面程序的。而pyqt就是一款非常好用的第三方GUI库,有了它,你可以轻松开发出跨平台的图形应用程序,其中qtdesigner设计器,更是加速了我们开发图形界面的速度。
除了上述介绍的之外,Python还有很多库,比如:Pandas、NumPy、SciPy、Seaborn、Keras等。
Python 外部函数调用库ctypes简介
一直对不同语言间的交互感兴趣,python和C语言又深有渊源,所以对python和c语言交互产生了兴趣。
最近了解了python提供的一个外部函数库 ctypes , 它提供了C语言兼容的几种数据类型,并且可以允许调用C编译好的库。
这里是阅读相关资料的一个记录,内容大部分来自 官方文档 。
ctypes 提供了一些原始的C语言兼容的数据类型,参见下表,其中第一列是在ctypes库中定义的变量类型,第二列是C语言定义的变量类型,第三列是Python语言在不使用ctypes时定义的变量类型。
创建简单的ctypes类型如下:
使用 .value 访问和改变值:
改变指针类型的变量值:
如果需要直接操作内存地址的数据类型:
下面的例子演示了使用C的数组和结构体:
创建指针实例
使用cast()类型转换
类似于C语言定义函数时,会先定义返回类型,然后具体实现再定义,当遇到下面这种情况时,也需要这么干:
可以简单地将"so"和"dll"理解成Linux和windows上动态链接库的指代,这里我们以Linux为例。注意,ctypes提供的接口会在不同系统上有出入,比如为了加载动态链接库, 在Linux上提供的是 cdll , 而在Windows上提供的是 windll 和 oledll 。
ctypes会寻找 _as_paramter_ 属性来用作调用函数的参数传入,这样就可以传入自己定义的类作为参数,示例如下:
用 argtypes 和 restype 来指定调用的函数返回类型。
这里我只是列出了 ctypes 最基础的部分,还有很多细节请参考官方文档。
这两天文章没有写,先是早出晚归出去玩了一整天,然后加班到凌晨3点左右,一天一篇计划划水得严重啊…
文章题目:pythonc函数库 c++ python库
路径分享:http://myzitong.com/article/hhiesc.html