python函数平方 python中求平方的函数
怎么用python求一个数的平方?
用python求一个数的平房可以按照如下的步骤:
成都创新互联-云计算及IDC服务提供商,涵盖公有云、IDC机房租用、双线服务器托管、等保安全、私有云建设等企业级互联网基础服务,欢迎咨询:028-86922220
1、利用input()函数获取一个数字a
a=input("请输入数字:")
2、利用运算符"**"获取变量a的二次幂运算
b=a**2
3、将获取到的结果利用print()函数打印到屏幕上即可。
print("a**2=",b)
运行结果:
python如何求平方根
1:二分法
求根号5
a:折半: 5/2=2.5
b:平方校验: 2.5*2.5=6.255,并且得到当前上限2.5
c:再次向下折半:2.5/2=1.25
d:平方校验:1.25*1.25=1.56255,得到当前下限1.25
e:再次折半:2.5-(2.5-1.25)/2=1.875
f:平方校验:1.875*1.875=3.5156255,得到当前下限1.875
每次得到当前值和5进行比较,并且记下下下限和上限,依次迭代,逐渐逼近平方根:
代码如下:
import math
from math import sqrt
def sqrt_binary(num):
x=sqrt(num)
y=num/2.0
low=0.0
up=num*1.0
count=1
while abs(y-x)0.00000001:
print count,y
count+=1
if (y*ynum):
up=y
y=low+(y-low)/2
else:
low=y
y=up-(up-y)/2
return y
print(sqrt_binary(5))
print(sqrt(5))
2:牛顿迭代
仔细思考一下就能发现,我们需要解决的问题可以简单化理解。
从函数意义上理解:我们是要求函数f(x) = x²,使f(x) = num的近似解,即x² - num = 0的近似解。
从几何意义上理解:我们是要求抛物线g(x) = x² - num与x轴交点(g(x) = 0)最接近的点。
我们假设g(x0)=0,即x0是正解,那么我们要做的就是让近似解x不断逼近x0,这是函数导数的定义:
从几何图形上看,因为导数是切线,通过不断迭代,导数与x轴的交点会不断逼近x0。
python编写程序求两个数的平方和
在python中有多种方法可以求一个数的平方和,可以使用:内置模块、表达式、内置函数等实现。
1、使用内置模块math
求4的平方
import mathmath.pow(4,2)
2、使用表达式法
计算4的平方
4 ** 2
3、使用内置函数
计算4的平方
pow(4,2)
python编写一个平方和函数,通过调用函数求n的平方和
def fun(num):
total = 0
for i in range(1, num+1):
total += i**2
return total
n = int(input('请输入n:'))
print('平方和为:', fun(n))
Python输入一个整数输出其对应的平方怎么写?
利用input()函数获取一个数字a,a=input("请输入数字:")。
而Python专用的科学计算扩展库就更多了,例如如下3个十分经典的科学计算扩展库:NumPy、SciPy和matplotlib,它们分别为Python提供了快速数组处理、数值运算以及绘图功能。
由于Python语言的简洁性、易读性以及可扩展性,在国外用Python做科学计算的研究机构日益增多,一些知名大学已经采用Python来教授程序设计课程。
例如卡耐基梅隆大学的编程基础、麻省理工学院的计算机科学及编程导论就使用Python语言讲授。众多开源的科学计算软件包都提供了Python的调用接口,例如著名的计算机视觉库OpenCV、三维可视化库VTK、医学图像处理库ITK。
python要使用平方根函数sqrt,需要导入( )库?
可以使用math库
import matha = 4print math.sqrt(4) # 2
也可以直接利用python的**运算符
a = 8a**(1/3) # 开3次方相当于1/3次乘方 结果是2 math中其他常用的数学函数:ceil(x) 取顶floor(x) 取底fabs(x) 取绝对值factorial (x) 阶乘hypot(x,y) sqrt(x*x+y*y)pow(x,y) x的y次方sqrt(x) 开平方log(x)log10(x)trunc(x) 截断取整数部分isnan (x) 判断是否NaN(not a number)degree (x) 弧度转角度radians(x) 角度转弧度
新闻标题:python函数平方 python中求平方的函数
网页路径:http://myzitong.com/article/hhjsog.html