python画点图的函数 python如何画点图
python 绘制三维图形、三维数据散点图
1. 绘制3D曲面图
创新互联是一家专业提供宣州企业网站建设,专注与网站设计制作、成都网站制作、H5开发、小程序制作等业务。10年已为宣州众多企业、政府机构等服务。创新互联专业的建站公司优惠进行中。
from matplotlib import pyplot as plt
import numpy as np
from mpl_toolkits.mplot3d import Axes3D
fig=plt.figure()
ax=Axes3D(fig)
x=np.arange(-4,4,0.25)
y=np.arange(-4,4,0.25)
x,y=np.meshgrid(x,y)
r=np.sqrt(x**2, y**2)
z=np.sin(r)
//绘面函数
ax.plot_surface(x,y,z,rstride=1,cstride=1,cmap=“rainbow”
plt.show()
2.绘制三维的散点图(表述一些数据点分布)
4a.mat数据地址:http blog.csdn.net/eddy_zhang/article/details/50496164
from matplotlib import pyplot as plt
import scipy.io as sio
from mpl_toolkits.mplot3d import Axes3D
matl=‘4a.mat’
data=sio.loadmat(matl)
m=data[‘data’]
x,y,z=m[0],m[1],m[2]
//创建一个绘图工程
ax=plt.subplot(111,project=‘3D’)
//将数据点分成三部分画,在颜色上有区分度
ax.scatter(x[:1000], y[:1000], z[:1000],c=‘y’ )//绘制数据点
ax.scatter(x[1000:4000], y[1000:4000], z[1000:4000],c=‘r’ )//绘制数据点
ax.scatter(x[4000:], y[4000:], z[4000:],c=‘g’ )//绘制数据点
ax.set_zlable(‘z’)//坐标轴
ax.set_ylable(‘y’)//坐标轴
ax.set_xlable(‘x’)
plt.show()
python数据可视化--matplotlib绘制散点图
'''
s:
size的缩写,设置散点的大小。若是给定一个数值,则所有点的大小一致;若是给定一个数组,则每个点的大小不同。
c:
color的缩写,设置散点的颜色。若只有一个值,则所有的点设置为同一个颜色,若给定一个颜色数组,则不同的点可以设置成不同的颜色,若给定浮点数的数组,则映射到相应的颜色。
marker:
用于设置散点的标记,用法与折线图的marker参数一对称,具体参考《python数据可视化--matplotlib绘制折线图(2)》对marker的详细介绍。
cmap:
表示数据点的颜色映射表,仅当参数c为浮点数的数组时才可用。cmap需要花很大的篇幅进行介绍,往后再详细讲解,在此先按下不表。
norm:
表示数据的亮度,取值范围在0~1,只有c是一个浮点数的数组的时候才使用。
alpha:
表示数据的透明度,取值范围在0~1。
linewidths:表示数据点边缘的宽度。
edgecolors:表示数据点边缘的颜色。
'''
'''
颜色映射是一系列颜色,从起始颜色渐变到结束颜色,可用于突出数据的规律
例如,交钱的颜色显示较小的值,较深的颜色显示较大的值
'''
彩色折线散点图python怎么指定数据
一、导包
二、绘制简单折线
1、在利用pandas模块进行操作前,可以先引入这个模块,如下:
2、读取Excel文件的两种方式:
三、pandas操作Excel的行列
1、读取指定的单行,数据会存在列表里面
2、读取指定的多行,数据会存在嵌套的列表里面
3、读取指定的行列
4、读取指定的多行多列值
5、获取所有行的指定列
6、获取行号并打印输出
7、获取列名并打印输出
8、获取指定行数的值
四、pandas处理Excel数据成为字典
五、绘制简单折线图
六、绘制简单散点图
使用scatter绘制散点图并设置其样式
1、绘制单个点,使用函数scatter,并向它传递x,y坐标,并可使用参数s指定点的大小
2、绘制一系列点,向scatter传递两个分别包含x值和y值的列表
3、设置坐标轴的取值范围:函数axis()要求提供四个值,x,y坐标轴的最大值和最小值
4、使用参数edgecolor在函数scatter中设置数据点的轮廓
5、向scatter传递参数c,指定要使用的颜色
6、使用颜色映射
7、自动保存图表:使用函数plt.savefig()
8、设置绘图窗口尺寸
9、实例程序
python绘图篇
1,xlable,ylable设置x,y轴的标题文字。
2,title设置标题。
3,xlim,ylim设置x,y轴显示范围。
plt.show()显示绘图窗口,通常情况下,show()会阻碍程序运行,带-wthread等参数的环境下,窗口不会关闭。
plt.saveFig()保存图像。
面向对象绘图
1,当前图表和子图可以用gcf(),gca()获得。
subplot()绘制包含多个图表的子图。
configure subplots,可调节子图与图表边框距离。
可以通过修改配置文件更改对象属性。
图标显示中文
1,在程序中直接指定字体。
2, 在程序开始修改配置字典reParams.
3,修改配置文件。
Artist对象
1,图标的绘制领域。
2,如何在FigureCanvas对象上绘图。
3,如何使用Renderer在FigureCanvas对象上绘图。
FigureCanvas和Render处理底层图像操作,Artist处理高层结构。
分为简单对象和容器对象,简单的Aritist是标准的绘图元件,例如Line 2D,Rectangle,Text,AxesImage等,而容器类型包含许多简单的的 Aritist对象,使他们构成一个整体,例如Axis,Axes,Figure等。
直接创建Artist对象进项绘图操作步奏:
1,创建Figure对象(通过figure()函数,会进行许多初始化操作,不建议直接创建。)
2,为Figure对象创建一个或多个Axes对象。
3,调用Axes对象的方法创建各类简单的Artist对象。
Figure容器
如何找到指定的Artist对象。
1,可调用add_subplot()和add_axes()方法向图表添加子图。
2,可使用for循环添加栅格。
3,可通过transform修改坐标原点。
Axes容器
1,patch修改背景。
2,包含坐标轴,坐标网格,刻度标签,坐标轴标题等内容。
3,get_ticklabels(),,get-ticklines获得刻度标签和刻度线。
1,可对曲线进行插值。
2,fill_between()绘制交点。
3,坐标变换。
4,绘制阴影。
5,添加注释。
1,绘制直方图的函数是
2,箱线图(Boxplot)也称箱须图(Box-whisker Plot),是利用数据中的五个统计量:最小值、第一四分位
数、中位数、第三四分位数与最大值来描述数据的一种方法,它可以粗略地看出数据是否具有对称性以及分
布的分散程度等信息,特别可以用于对几个样本的比较。
3,饼图就是把一个圆盘按所需表达变量的观察数划分为若干份,每一份的角度(即面积)等价于每个观察
值的大小。
4,散点图
5,QQ图
低层绘图函数
类似于barplot(),dotchart()和plot()这样的函数采用低层的绘图函数来画线和点,来表达它们在页面上放置的位置以及其他各种特征。
在这一节中,我们会描述一些低层的绘图函数,用户也可以调用这些函数用于绘图。首先我们先讲一下R怎么描述一个页面;然后我们讲怎么在页面上添加点,线和文字;最后讲一下怎么修改一些基本的图形。
绘图区域与边界
R在绘图时,将显示区域划分为几个部分。绘制区域显示了根据数据描绘出来的图像,在此区域内R根据数据选择一个坐标系,通过显示出来的坐标轴可以看到R使用的坐标系。在绘制区域之外是边沿区,从底部开始按顺时针方向分别用数字1到4表示。文字和标签通常显示在边沿区域内,按照从内到外的行数先后显示。
添加对象
在绘制的图像上还可以继续添加若干对象,下面是几个有用的函数,以及对其功能的说明。
•points(x, y, ...),添加点
•lines(x, y, ...),添加线段
•text(x, y, labels, ...),添加文字
•abline(a, b, ...),添加直线y=a+bx
•abline(h=y, ...),添加水平线
•abline(v=x, ...),添加垂直线
•polygon(x, y, ...),添加一个闭合的多边形
•segments(x0, y0, x1, y1, ...),画线段
•arrows(x0, y0, x1, y1, ...),画箭头
•symbols(x, y, ...),添加各种符号
•legend(x, y, legend, ...),添加图列说明
Python实现彩色散点图绘制(利用色带对散点图进行颜色渲染)
接受自己的普通,然后全力以赴的出众,告诉自己要努力,但不要着急....
当然, 这个结果并不是我真正想要的,Pass, 太丑了!
好吧,安排,我们先看下实现后的效果!
这个效果自然就比之前的好多了!
实现python散点图绘制需要用到matplotlib库, matplotlib库是专门用于可视化绘图的工具库;学习一个新的库当然看官方文档了:
实现思路:
matplotlib.pyplot.scatter() 函数是专门绘制散点图的函数:
matplotlib.pyplot.scatter ( x, y , s=None , c=None , marker=None , cmap=None , norm=None , vmin=None , vmax=None , alpha=None , linewidths=None , verts=None , edgecolors=None , ***, data=None , ** kwargs ) **
plt.scatter(observation, estimate, c=Z1, cmap=colormap, marker=".", s=marker_size, norm=colors.LogNorm(vmin=Z1.min(), vmax=0.5 * Z1.max()))
其中:
1、c参数为计算的散点密度;
2、cmap为色带(matplotlib里面自带了很多色带可供选择),参见:
3、由于计算的散点密度数值大小分散,因此利用norm参数对散点密度Z1进行归一化处理(归一化方式很多,参见colors类),并给归一化方式设置色带刻度的最大最小值vmin和vmax(一般这两个参数就是指定散点密度的最小值和最大值),这样就建立起了密度与色带的映射关系。
(这里的结果与前面展示的相比改变了计算散点密度的半径:radius = 3以及绘制散点图的散点大小marksize)
作者能力水平有限,欢迎各位批评指正!
用Python画图
今天开始琢磨用Python画图,没使用之前是一脸懵的,我使用的开发环境是Pycharm,这个输出的是一行行命令,这个图画在哪里呢?
搜索之后发现,它会弹出一个对话框,然后就开始画了,比如下图
第一个常用的库是Turtle,它是Python语言中一个很流行的绘制图像的函数库,这个词的意思就是乌龟,你可以想象下一个小乌龟在一个x和y轴的平面坐标系里,从原点开始根据指令控制,爬行出来就是绘制的图形了。
它最常用的指令就是旋转和移动,比如画个圆,就是绕着圆心移动;再比如上图这个怎么画呢,其实主要就两个命令:
turtle.forward(200)
turtle.left(170)
第一个命令是移动200个单位并画出来轨迹
第二个命令是画笔顺时针转170度,注意此时并没有移动,只是转角度
然后呢? 循环重复就画出来这个图了
好玩吧。
有需要仔细研究的可以看下这篇文章 ,这个牛人最后用这个库画个移动的钟表,太赞了。
Turtle虽好玩,但是我想要的是我给定数据,然后让它画图,这里就找到另一个常用的画图的库了。
Matplotlib是python最著名的绘图库,它提供了一整套和matlab相似的命令API,十分适合交互式地行制图。其中,matplotlib的pyplot模块一般是最常用的,可以方便用户快速绘制二维图表。
使用起来也挺简单,
首先import matplotlib.pyplot as plt 导入画图的图。
然后给定x和y,用这个命令plt.plot(x, y)就能画图了,接着用plt.show()就可以把图形展示出来。
接着就是各种完善,比如加标题,设定x轴和y轴标签,范围,颜色,网格等等,在 这篇文章里介绍的很详细。
现在互联网的好处就是你需要什么内容,基本上都能搜索出来,而且还是免费的。
我为什么要研究这个呢?当然是为了用,比如我把比特币的曲线自己画出来可好?
假设现在有个数据csv文件,一列是日期,另一列是比特币的价格,那用这个命令画下:
这两列数据读到pandas中,日期为df['time']列,比特币价格为df['ini'],那我只要使用如下命令
plt.plot(df['time'], df['ini'])
plt.show()
就能得到如下图:
自己画的是不是很香,哈哈!
然后呢,我在上篇文章 中介绍过求Ahr999指数,那可不可以也放到这张图中呢?不就是加一条命令嘛
plt.plot(df['time'], df['Ahr999'])
图形如下:
但是,Ahr999指数怎么就一条线不动啊, 原来两个Y轴不一致,显示出来太怪了,需要用多Y轴,问题来了。
继续谷歌一下,把第二个Y轴放右边就行了,不过呢得使用多图,重新绘制
fig = plt.figure() # 多图
ax1 = fig.add_subplot(111)
ax1.plot(df['time'], df['ini'], label="BTC price") # 绘制第一个图比特币价格
ax1.set_ylabel('BTC price') # 加上标签
# 第二个直接对称就行了
ax2 = ax1.twinx()# 在右边增加一个Y轴
ax2.plot(df['time'], df['Ahr999'], 'r', label="ahr999") # 绘制第二个图Ahr999指数,红色
ax2.set_ylim([0, 50])# 设定第二个Y轴范围
ax2.set_ylabel('ahr999')
plt.grid(color="k", linestyle=":")# 网格
fig.legend(loc="center")#图例
plt.show()
跑起来看看效果,虽然丑了点,但终于跑通了。
这样就可以把所有指数都绘制到一张图中,等等,三个甚至多个Y轴怎么加?这又是一个问题,留给爱思考爱学习的你。
有了自己的数据,建立自己的各个指数,然后再放到图形界面中,同时针对异常情况再自动进行提醒,比如要抄底了,要卖出了,用程序做出自己的晴雨表。
名称栏目:python画点图的函数 python如何画点图
网页路径:http://myzitong.com/article/hicgjo.html