mysql千万级怎么优化 mysql千万级数据解决方案

MySQL 对于千万级的大表要怎么优化

通过sysbench的oltp_read_write测试来模拟业务压力、以此来给指定的硬件环境配置一份比较合理的MySQL配置文件。

创新互联公司坚持“要么做到,要么别承诺”的工作理念,服务领域包括:成都网站设计、成都网站制作、企业官网、英文网站、手机端网站、网站推广等服务,满足客户于互联网时代的东山网站设计、移动媒体设计的需求,帮助企业找到有效的互联网解决方案。努力成为您成熟可靠的网络建设合作伙伴!

环境介绍

硬件配置

请点击输入图片描述

软件环境

请点击输入图片描述

优化层级与指导思想

优化层级

MySQL数据库优化可以在多个不同的层级进行,常见的有:

SQL优化

参数优化

架构优化

本文重点关注:参数优化

指导思想

日志先行 -- 一个事务能否成功提交的关键是日志是否成功落盘,与数据没有太大的关系;也就是说对写的优化可以表述为各方面的资源向写操作倾斜。

瓶颈分析 -- 通过show global status 的各个计数器的值基本上就能分析出当前瓶颈所在,再结合一些简单的系统层面的监控工具如top iostat 就能明确瓶颈。

整体性能是“读”“写”之间的再平衡。

Mysql 千万级数据量插入和查询应该怎么优化

一、使用LOAD DATA INFILE从文本下载数据这将比使用插入语句快20倍。

二、使用多个值表的 INSERT 语句 ,可以大大缩减客户端与数据库之间的连接、语法分析等消耗,使得效率比分开执行的单个 INSERT 语句快很多,相关的命令我们会在 SQL 优化详细介绍。如果多值的 INSERT是往一个非空的数据表里增加记录 ,也可以通过调整 bulk_insert_buffer_size 参数来提高数据插入的效率,这个参数设置的是 bulk insert 的缓存大小,默认是 8M 。

insert本身的多个value:

INSERT INTO table (field1,field2,field3) VALUES ('a',"b","c"), ('a',"b","c"),('a',"b","c");

在my.cnf中添加如下语句,将insert语句的长度设为最大。

Max_allowed_packet=1M

Net_buffer_length=2k

查看bulk_insert_buffer_size的值。

mysql SHOW VARIABLES;

+———————————+—————————————-+

| Variable_name | Value |

+———————————+—————————————-+

| auto_increment_increment | 1 |

| auto_increment_offset | 1 |

| automatic_sp_privileges | ON |

| back_log | 50 |

| basedir | /usr/local/mysql/ |

| binlog_cache_size | 32768 |

| bulk_insert_buffer_size | 8388608 |

Mysql某个表有近千万数据,CRUD比较慢,如何优化?

数据千万级别之多,占用的存储空间也比较大,可想而知它不会存储在一块连续的物理空间上,而是链式存储在多个碎片的物理空间上。可能对于长字符串的比较,就用更多的时间查找与比较,这就导致用更多的时间。

可以做表拆分,减少单表字段数量,优化表结构。

在保证主键有效的情况下,检查主键索引的字段顺序,使得查询语句中条件的字段顺序和主键索引的字段顺序保持一致。

主要两种拆分 垂直拆分,水平拆分。

垂直分表

也就是“大表拆小表”,基于列字段进行的。一般是表中的字段较多,将不常用的, 数据较大,长度较长(比如text类型字段)的拆分到“扩展表“。 一般是针对 那种 几百列的大表,也避免查询时,数据量太大造成的“跨页”问题。

垂直分库针对的是一个系统中的不同业务进行拆分,比如用户User一个库,商品Product一个库,订单Order一个库。 切分后,要放在多个服务器上,而不是一个服务器上。为什么? 我们想象一下,一个购物网站对外提供服务,会有用户,商品,订单等的CRUD。没拆分之前, 全部都是落到单一的库上的,这会让数据库的单库处理能力成为瓶颈。按垂直分库后,如果还是放在一个数据库服务器上, 随着用户量增大,这会让单个数据库的处理能力成为瓶颈,还有单个服务器的磁盘空间,内存,tps等非常吃紧。 所以我们要拆分到多个服务器上,这样上面的问题都解决了,以后也不会面对单机资源问题。

数据库业务层面的拆分,和服务的“治理”,“降级”机制类似,也能对不同业务的数据分别的进行管理,维护,监控,扩展等。 数据库往往最容易成为应用系统的瓶颈,而数据库本身属于“有状态”的,相对于Web和应用服务器来讲,是比较难实现“横向扩展”的。 数据库的连接资源比较宝贵且单机处理能力也有限,在高并发场景下,垂直分库一定程度上能够突破IO、连接数及单机硬件资源的瓶颈。

水平分表

针对数据量巨大的单张表(比如订单表),按照某种规则(RANGE,HASH取模等),切分到多张表里面去。 但是这些表还是在同一个库中,所以库级别的数据库操作还是有IO瓶颈。不建议采用。

水平分库分表

将单张表的数据切分到多个服务器上去,每个服务器具有相应的库与表,只是表中数据集合不同。 水平分库分表能够有效的缓解单机和单库的性能瓶颈和压力,突破IO、连接数、硬件资源等的瓶颈。

水平分库分表切分规则

1. RANGE

从0到10000一个表,10001到20000一个表;

2. HASH取模

一个商场系统,一般都是将用户,订单作为主表,然后将和它们相关的作为附表,这样不会造成跨库事务之类的问题。 取用户id,然后hash取模,分配到不同的数据库上。

3. 地理区域

比如按照华东,华南,华北这样来区分业务,七牛云应该就是如此。

4. 时间

按照时间切分,就是将6个月前,甚至一年前的数据切出去放到另外的一张表,因为随着时间流逝,这些表的数据 被查询的概率变小,所以没必要和“热数据”放在一起,这个也是“冷热数据分离”。

分库分表后面临的问题

事务支持

分库分表后,就成了分布式事务了。如果依赖数据库本身的分布式事务管理功能去执行事务,将付出高昂的性能代价; 如果由应用程序去协助控制,形成程序逻辑上的事务,又会造成编程方面的负担。

跨库join

只要是进行切分,跨节点Join的问题是不可避免的。但是良好的设计和切分却可以减少此类情况的发生。解决这一问题的普遍做法是分两次查询实现。在第一次查询的结果集中找出关联数据的id,根据这些id发起第二次请求得到关联数据。

跨节点的count,order by,group by以及聚合函数问题

这些是一类问题,因为它们都需要基于全部数据集合进行计算。多数的代理都不会自动处理合并工作。解决方案:与解决跨节点join问题的类似,分别在各个节点上得到结果后在应用程序端进行合并。和join不同的是每个结点的查询可以并行执行,因此很多时候它的速度要比单一大表快很多。但如果结果集很大,对应用程序内存的消耗是一个问题。

数据迁移,容量规划,扩容等问题

来自淘宝综合业务平台团队,它利用对2的倍数取余具有向前兼容的特性(如对4取余得1的数对2取余也是1)来分配数据,避免了行级别的数据迁移,但是依然需要进行表级别的迁移,同时对扩容规模和分表数量都有限制。总得来说,这些方案都不是十分的理想,多多少少都存在一些缺点,这也从一个侧面反映出了Sharding扩容的难度。

ID问题

一旦数据库被切分到多个物理结点上,我们将不能再依赖数据库自身的主键生成机制。一方面,某个分区数据库自生成的ID无法保证在全局上是唯一的;另一方面,应用程序在插入数据之前需要先获得ID,以便进行SQL路由.

一些常见的主键生成策略

UUID

使用UUID作主键是最简单的方案,但是缺点也是非常明显的。由于UUID非常的长,除占用大量存储空间外,最主要的问题是在索引上,在建立索引和基于索引进行查询时都存在性能问题。

Twitter的分布式自增ID算法Snowflake

在分布式系统中,需要生成全局UID的场合还是比较多的,twitter的snowflake解决了这种需求,实现也还是很简单的,除去配置信息,核心代码就是毫秒级时间41位 机器ID 10位 毫秒内序列12位。

跨分片的排序分页

一般来讲,分页时需要按照指定字段进行排序。当排序字段就是分片字段的时候,我们通过分片规则可以比较容易定位到指定的分片,而当排序字段非分片字段的时候,情况就会变得比较复杂了。为了最终结果的准确性,我们需要在不同的分片节点中将数据进行排序并返回,并将不同分片返回的结果集进行汇总和再次排序,最后再返回给用户。

MySQL按月自动创建分区表(千万级大表优化)

对用户来说,分区表是一个独立的逻辑表,但是底层由多个物理子表组成,实现分区的代码实际上是通过对一组底层表的对象封装,但对SQL层来说是一个完全封装底层的黑盒子。

MySQL实现分区的方式也意味着索引也是按照分区的子表定义, 没有全局索引 。

分区的意思是指将同一表中不同行的记录分配到不同的物理文件中 ,几个分区就有几个.idb文件。MySQL数据库的分区是局部分区索引,一个分区中既存了数据,又放了索引。也就是说,每个区的聚集索引和非聚集索引都放在各自区的(不同的物理文件)。

1、可以让单表 存储更多的数据 。

2、 分区表的数据更容易维护 ,可以通过删除与那些数据有关的分区,更容易删除数据,也可以增加新的分区来支持新插入的数据。另外,还可以对一个独立分区进行优化、检查、修复等操作。

3、部分查询能够从查询条件确定只落在少数分区上, 查询速度会很快 。

4、通过跨多个磁盘来分散数据查询,来 获得更大的查询吞吐量 。

要使定时事件起作用,MySQL的常量GLOBAL event_scheduler必须为on或者是1。

1、查看scheduler的当前状态:

2、修改scheduler状态为打开(0:off , 1:on):

3、临时打开定时器(四种方法):

4、永久生效的方法,修改配置文件my.cnf

5、临时开启某个事件

6、临时关闭某个事件


分享文章:mysql千万级怎么优化 mysql千万级数据解决方案
网站地址:http://myzitong.com/article/hihiph.html