内嵌函数python 内嵌函数定义较复杂数据结构

68 个 Python 内置函数详解

内置函数就是Python给你提供的,拿来直接用的函数,比如print.,input等。

创新互联专业为企业提供瓮安网站建设、瓮安做网站、瓮安网站设计、瓮安网站制作等企业网站建设、网页设计与制作、瓮安企业网站模板建站服务,十多年瓮安做网站经验,不只是建网站,更提供有价值的思路和整体网络服务。

截止到python版本3.6.2 ,python一共提供了68个内置函数,具体如下

本文将这68个内置函数综合整理为12大类,正在学习Python基础的读者一定不要错过,建议收藏学习!

(1)列表和元组

(2)相关内置函数

(3)字符串

frozenset 创建一个冻结的集合,冻结的集合不能进行添加和删除操作。

语法:sorted(Iterable, key=函数(排序规则), reverse=False)

语法:fiter(function. Iterable)

function: 用来筛选的函数. 在filter中会自动的把iterable中的元素传递给function. 然后根据function返回的True或者False来判断是否保留留此项数据 , Iterable: 可迭代对象

搜索公众号顶级架构师后台回复“面试”,送你一份惊喜礼包。

语法 : map(function, iterable)

可以对可迭代对象中的每一个元素进行映射. 分别去执行 function

hash : 获取到对象的哈希值(int, str, bool, tuple). hash算法:(1) 目的是唯一性 (2) dict 查找效率非常高, hash表.用空间换的时间 比较耗费内存

Python嵌套函数和闭包

在Python语言中,可以在函数中定义函数。 这种在函数中嵌套定义的函数也叫内部函数。我们来看下面的代码:

上述代码中,定义了函数greet,在函数greet内部又定义了一个函数inner_func, 并调用该函数打印了一串字符。

我们可以看到,内部函数inner_func的定义和使用与普通函数基本相同。需要注意的是变量的作用域,在上述代码中,函数参数name对于全局函数greet是局部变量,对内部函数inner_func来说则是非局部变量。内部函数对于非局部变量的访问规则类似于标准的外部函数访问全局变量。

从这个例子我们还可以看到内部函数的一个作用,就是通过定义内部函数的方式将一些功能隐藏起来,防止外部直接调用。常见的场景是,在一个复杂逻辑的函数中,将一些小的任务定义成内部函数,然后由这个外层函数使用,这样可以使代码更为清晰,易于维护。这些内部函数只会在这个外层函数中使用,不能被其他函数或模块使用。

在Python语言中, 函数也是对象,它可以被创建、赋值给变量,或者作为函数的返回值。我们来看下面这个例子。

在上述代码中,在函数gen_greet内部定义了inner_func函数,并返回了一个inner_func函数对象。外部函数gen_greet返回了一个函数对象,所以像gen_greet这样的函数也叫工厂函数。

在内部函数inner_func中,使用了外部函数的传参greet_words(非局部变量),以及函数的参数name(局部变量),来打印一个字符串。

接下来,调用gen_greet("Hello")创建一个函数对象say_hello,紧接着调用say_hello("Mr. Zhang"),输出的结果为:Hello, Mr. Zhang!

同样的,调用gen_greet("Hi")创建一个函数对象say_hi,调用say_hello("Mr. Zhang"),输出的结果为:Hi,Tony!

我们可以发现,gen_greet返回的函数对象具有记忆功能,它能够把所需使用的非局部变量保存下来,用于后续被调用的时候使用。这种保存了非局部变量的函数对象被称作闭包(closure)。

那么闭包是如何实现的呢?其实并不复杂,函数对象中有一个属性__closure__,它就是在创建函数对象时用来保存这些非局部变量的。

__closure__属性是一个元组或者None类型。在上述代码中,我们可以通过下面方式查看:

函数的嵌套所实现的功能大都可以通过定义类的方式来实现,而且类是更加面向对象的代码编写方式。

嵌套函数的一个主要用途是实现函数的装饰器。我们看下面的代码:

在上述代码中,logger函数返回函数with_logging,with_logging则是打印了函数func的名称及传入的参数,然后调用func, 并将参数传递给func。其中的@wraps(func)语句用于复制函数func的名称、注释文档、参数列表等等,使得with_logging函数具有被装饰的函数func相同的属性。

代码中接下来用@logger对函数power_func进行修饰,它的作用等同于下面的代码:

可见,装饰器@符其实就是上述代码的精简写法。

通过了解了嵌套函数和闭包的工作原理,我们在使用过程中就能够更加得心应手了。

Python中冷门但非常好用的内置函数

Python中有许多内置函数,不像print、len那么广为人知,但它们的功能却异常强大,用好了可以大大提高代码效率,同时提升代码的简洁度,增强可阅读性

Counter

collections在python官方文档中的解释是High-performance container datatypes,直接的中文翻译解释高性能容量数据类型。这个模块实现了特定目标的容器,以提供Python标准内建容器 dict , list , set , 和 tuple 的替代选择。在python3.10.1中它总共包含以下几种数据类型:

容器名简介

namedtuple() 创建命名元组子类的工厂函数

deque 类似列表(list)的容器,实现了在两端快速添加(append)和弹出(pop)

ChainMap 类似字典(dict)的容器类,将多个映射集合到一个视图里面

Counter 字典的子类,提供了可哈希对象的计数功能

OrderedDict 字典的子类,保存了他们被添加的顺序

defaultdict 字典的子类,提供了一个工厂函数,为字典查询提供一个默认值

UserDict 封装了字典对象,简化了字典子类化

UserList 封装了列表对象,简化了列表子类化

UserString 封装了字符串对象,简化了字符串子类化

其中Counter中文意思是计数器,也就是我们常用于统计的一种数据类型,在使用Counter之后可以让我们的代码更加简单易读。Counter类继承dict类,所以它能使用dict类里面的方法

举例

#统计词频

fruits = ['apple', 'peach', 'apple', 'lemon', 'peach', 'peach']

result = {}

for fruit in fruits:

if not result.get(fruit):

result[fruit] = 1

else:

result[fruit] += 1

print(result)

#{'apple': 2, 'peach': 3, 'lemon': 1}下面我们看用Counter怎么实现:

from collections import Counter

fruits = ['apple', 'peach', 'apple', 'lemon', 'peach', 'peach']

c = Counter(fruits)

print(dict(c))

#{'apple': 2, 'peach': 3, 'lemon': 1}显然代码更加简单了,也更容易阅读和维护了。

elements()

返回一个迭代器,其中每个元素将重复出现计数值所指定次。元素会按首次出现的顺序返回。如果一个元素的计数值小于1,elements()将会忽略它。

c = Counter(a=4, b=2, c=0, d=-2)

sorted(c.elements())

['a', 'a', 'a', 'a', 'b', 'b']most_common([n])

返回一个列表,其中包含n个最常见的元素及出现次数,按常见程度由高到低排序。如果n被省略或为None,most_common()将返回计数器中的所有元素。计数值相等的元素按首次出现的顺序排序:

Counter('abracadabra').most_common(3)

[('a', 5), ('b', 2), ('r', 2)]这两个方法是Counter中最常用的方法,其他方法可以参考 python3.10.1官方文档

实战

Leetcode 1002.查找共用字符

给你一个字符串数组words,请你找出所有在words的每个字符串中都出现的共用字符(包括重复字符),并以数组形式返回。你可以按任意顺序返回答案。

输入:words = ["bella", "label", "roller"]

输出:["e", "l", "l"]

输入:words = ["cool", "lock", "cook"]

输出:["c", "o"]看到统计字符,典型的可以用Counter完美解决。这道题是找出字符串列表里面每个元素都包含的字符,首先可以用Counter计算出每个元素每个字符出现的次数,依次取交集最后得出所有元素共同存在的字符,然后利用elements输出共用字符出现的次数

class Solution:

def commonChars(self, words: List[str]) - List[str]:

from collections import Counter

ans = Counter(words[0])

for i in words[1:]:

ans = Counter(i)

return list(ans.elements())提交一下,发现83个测试用例耗时48ms,速度还是不错的

sorted

在处理数据过程中,我们经常会用到排序操作,比如将列表、字典、元组里面的元素正/倒排序。这时候就需要用到sorted(),它可以对任何可迭代对象进行排序,并返回列表

对列表升序操作:

a = sorted([2, 4, 3, 7, 1, 9])

print(a)

# 输出:[1, 2, 3, 4, 7, 9]对元组倒序操作:

sorted((4,1,9,6),reverse=True)

print(a)

# 输出:[9, 6, 4, 1]使用参数:key,根据自定义规则,按字符串长度来排序:

fruits = ['apple', 'watermelon', 'pear', 'banana']

a = sorted(fruits, key = lambda x : len(x))

print(a)

# 输出:['pear', 'apple', 'banana', 'watermelon']all

all() 函数用于判断给定的可迭代参数iterable中的所有元素是否都为 TRUE,如果是返回 True,否则返回 False。元素除了是 0、空、None、False外都算True。注意:空元组、空列表返回值为True。

all(['a', 'b', 'c', 'd']) # 列表list,元素都不为空或0

True

all(['a', 'b', '', 'd']) # 列表list,存在一个为空的元素

False

all([0, 1,2, 3]) # 列表list,存在一个为0的元素

False

all(('a', 'b', 'c', 'd')) # 元组tuple,元素都不为空或0

True

all(('a', 'b', '', 'd')) # 元组tuple,存在一个为空的元素

False

all((0, 1, 2, 3)) # 元组tuple,存在一个为0的元素

False

all([]) # 空列表

True

all(()) # 空元组

Trueany函数正好和all函数相反:判断一个tuple或者list是否全为空,0,False。如果全为空,0,False,则返回False;如果不全为空,则返回True。

F-strings

在python3.6.2版本中,PEP 498提出一种新型字符串格式化机制,被称为 “字符串插值” 或者更常见的一种称呼是F-strings,F-strings提供了一种明确且方便的方式将python表达式嵌入到字符串中来进行格式化:

s1='Hello'

s2='World'

print(f'{s1} {s2}!')

# Hello World!在F-strings中我们也可以执行函数:

def power(x):

return x*x

x=4

print(f'{x} * {x} = {power(x)}')

# 4 * 4 = 16而且F-strings的运行速度很快,比传统的%-string和str.format()这两种格式化方法都快得多,书写起来也更加简单。

本文主要讲解了python几种冷门但好用的函数,更多内容以后会陆陆续续更新~


网站栏目:内嵌函数python 内嵌函数定义较复杂数据结构
标题链接:http://myzitong.com/article/hjipdc.html