PHP海量数据存储 php大量数据处理
php 数据库图片存储问题?
存储的是相对路径,可以到网站服务器上查看,应该有upload文件夹,里面就是存储的图片,这样写的好处是节省了数据库存储空间,转移的时候可以直接将整个服务器的图片打包转移。
在桑珠孜等地区,都构建了全面的区域性战略布局,加强发展的系统性、市场前瞻性、产品创新能力,以专注、极致的服务理念,为客户提供成都网站制作、成都网站建设 网站设计制作专业公司,公司网站建设,企业网站建设,品牌网站建设,营销型网站,外贸营销网站建设,桑珠孜网站建设费用合理。
访问的时候,前面可以拼接域名和指定的路径,这些后台可以轻松获取到,然后拼接上服务器的路径,我们就可以直接在网页上访问到图片了。
这是很常见的图片数据库保存方式,和直接把图片的二进制存入数据库,这样的方式便于检索,占用空间小。当然,目前主流都采用oss来单独存储文件了,就是有专门的文件服务器,这个时候,一般存储的是完整的图片路径。
windows下 php memcached 设置最大内存
工具:
memcached-1.2.6-win32-bin.zip MemCached服务端程序(for win)
Memcached Manager win下的MemCached管理工具
安装配置MemCached服务端
下载memcached-1.2.6-win32-bin.zip ,解压后得到memcached.exe,就是memcached的主程序了。比如我们放到MemCached服务器下的C:\Program Files\MemCacheD下
下载安装Memcached Manager ,通过这个来管理memcached的服务端。
打开MemCacheD Manager,点击 add Server,填写服务器信息。我这里直接在本地安装了memcached。如图,填完后点击apply,成功的话右侧会出现服务器。
点击Add Instance添加memcached实例。这里有一些配置信息。Ip,端口,内存等等,不解释了。点击apply后会提示你是否现在启动,我们这里选是
成功后发现右侧已经有实例了,到此服务端配置完毕。
二、php安装Memcached模块支持
1、下载php_memcache.dll模块,
你可以从找到对应的版本,
php5.3对应php_memcache-2.2.6-5.3-vc9-x86.zip
将php_memcache.dll放到php\ext目录下,
2、修改php.ini来加入扩展,并并重启apache服务器
在php.ini加入一行引用扩展,代码如下:
extension=php_memcache.dll
接着在 php.ini 文件里加上:
[Memcache]
memcache.allow_failover = 1
memcache.max_failover_attempts=20
memcache.chunk_size =8192
memcache.default_port = 11211
最好就放在刚才写 "extension=php_memcache.dll" 的下面。(这是默认的一些配置),重启apache服务器,
然后查看一下phpinfo,如果有memcache,那么就说明安装成功!
测试windows下的Memcached
测试代码如下:
复制代码
?php
$mem = new Memcache;
$mem-connect("127.0.0.1", 11211);
$mem-set('key', 'Hello Memcached!', 0, 60);
$val = $mem-get('key');
echo $val;
?
复制代码
php 对海量数据修改更新
Failed to create directory
CCLOG("AssetsManagerEx : can not create directory %s\n", fullPath.c_str());
unzClose(zipfile);
return false;
}
}
php怎么写入、存储数组数据?
PHP有自带的高性能函数 var_export
conn.php
?php
$dbconfig = array (
'host'='127.0.0.1',
'name'='root',
'password'='123456',
?
b.php
?php
// 读取配置
include 'conn.php';
echo $dbconfig['host'];
// 修改配置
$dbconfig['host'] = 'xxx.xxx.xxx.xxx';
file_put_contents('conn.php', "?php\n$dbconfig = " . var_export($dbconfig) . "\n?");
// 再读取配置
include 'conn.php';
echo $dbconfig['host'];
?
参考连接:
php面试题 memcache和redis的区别
Redis与Memcached的区别
传统MySQL+ Memcached架构遇到的问题
实际MySQL是适合进行海量数据存储的,通过Memcached将热点数据加载到cache,加速访问,很多公司都曾经使用过这样的架构,但随着业务数据量的不断增加,和访问量的持续增长,我们遇到了很多问题:
1.MySQL需要不断进行拆库拆表,Memcached也需不断跟着扩容,扩容和维护工作占据大量开发时间。
2.Memcached与MySQL数据库数据一致性问题。
3.Memcached数据命中率低或down机,大量访问直接穿透到DB,MySQL无法支撑。
4.跨机房cache同步问题。
众多NoSQL百花齐放,如何选择
最近几年,业界不断涌现出很多各种各样的NoSQL产品,那么如何才能正确地使用好这些产品,最大化地发挥其长处,是我们需要深入研究和思考的
问题,实际归根结底最重要的是了解这些产品的定位,并且了解到每款产品的tradeoffs,在实际应用中做到扬长避短,总体上这些NoSQL主要用于解
决以下几种问题
1.少量数据存储,高速读写访问。此类产品通过数据全部in-momery 的方式来保证高速访问,同时提供数据落地的功能,实际这正是Redis最主要的适用场景。
2.海量数据存储,分布式系统支持,数据一致性保证,方便的集群节点添加/删除。
3.这方面最具代表性的是dynamo和bigtable 2篇论文所阐述的思路。前者是一个完全无中心的设计,节点之间通过gossip方式传递集群信息,数据保证最终一致性,后者是一个中心化的方案设计,通过类似一个分布式锁服务来保证强一致性,数据写入先写内存和redo log,然后定期compat归并到磁盘上,将随机写优化为顺序写,提高写入性能。
4.Schema free,auto-sharding等。比如目前常见的一些文档数据库都是支持schema-free的,直接存储json格式数据,并且支持auto-sharding等功能,比如mongodb。
面对这些不同类型的NoSQL产品,我们需要根据我们的业务场景选择最合适的产品。
Redis适用场景,如何正确的使用
前面已经分析过,Redis最适合所有数据in-momory的场景,虽然Redis也提供持久化功能,但实际更多的是一个disk-
backed的功能,跟传统意义上的持久化有比较大的差别,那么可能大家就会有疑问,似乎Redis更像一个加强版的Memcached,那么何时使用
Memcached,何时使用Redis呢?
如果简单地比较Redis与Memcached的区别,大多数都会得到以下观点:
1 Redis不仅仅支持简单的k/v类型的数据,同时还提供list,set,zset,hash等数据结构的存储。
2 Redis支持数据的备份,即master-slave模式的数据备份。
3 Redis支持数据的持久化,可以将内存中的数据保持在磁盘中,重启的时候可以再次加载进行使用。
抛开这些,可以深入到Redis内部构造去观察更加本质的区别,理解Redis的设计。
在
Redis中,并不是所有的数据都一直存储在内存中的。这是和Memcached相比一个最大的区别。Redis只会缓存所有的
key的信息,如果Redis发现内存的使用量超过了某一个阀值,将触发swap的操作,Redis根据“swappability =
age*log(size_in_memory)”计
算出哪些key对应的value需要swap到磁盘。然后再将这些key对应的value持久化到磁盘中,同时在内存中清除。这种特性使得Redis可以
保持超过其机器本身内存大小的数据。当然,机器本身的内存必须要能够保持所有的key,毕竟这些数据是不会进行swap操作的。同时由于Redis将内存
中的数据swap到磁盘中的时候,提供服务的主线程和进行swap操作的子线程会共享这部分内存,所以如果更新需要swap的数据,Redis将阻塞这个
操作,直到子线程完成swap操作后才可以进行修改。
使用Redis特有内存模型前后的情况对比:
VM off: 300k keys, 4096 bytes values: 1.3G used
VM on: 300k keys, 4096 bytes values: 73M used
VM off: 1 million keys, 256 bytes values: 430.12M used
VM on: 1 million keys, 256 bytes values: 160.09M used
VM on: 1 million keys, values as large as you want, still: 160.09M used
当
从Redis中读取数据的时候,如果读取的key对应的value不在内存中,那么Redis就需要从swap文件中加载相应数据,然后再返回给请求方。
这里就存在一个I/O线程池的问题。在默认的情况下,Redis会出现阻塞,即完成所有的swap文件加载后才会相应。这种策略在客户端的数量较小,进行
批量操作的时候比较合适。但是如果将Redis应用在一个大型的网站应用程序中,这显然是无法满足大并发的情况的。所以Redis运行我们设置I/O线程
池的大小,对需要从swap文件中加载相应数据的读取请求进行并发操作,减少阻塞的时间。
如果希望在海量数据的环境中使用好Redis,我相信理解Redis的内存设计和阻塞的情况是不可缺少的。
补充的知识点:
memcached和redis的比较
1 网络IO模型
Memcached是多线程,非阻塞IO复用的网络模型,分为监听主线程和worker子线程,监听线程监听网络连接,接受请求后,将连接描述
字pipe 传递给worker线程,进行读写IO, 网络层使用libevent封装的事件库,多线程模型可以发挥多核作用,但是引入了cache
coherency和锁的问题,比如,Memcached最常用的stats
命令,实际Memcached所有操作都要对这个全局变量加锁,进行计数等工作,带来了性能损耗。
(Memcached网络IO模型)
Redis使用单线程的IO复用模型,自己封装了一个简单的AeEvent事件处理框架,主要实现了epoll、kqueue和select,
对于单纯只有IO操作来说,单线程可以将速度优势发挥到最大,但是Redis也提供了一些简单的计算功能,比如排序、聚合等,对于这些操作,单线程模型实
际会严重影响整体吞吐量,CPU计算过程中,整个IO调度都是被阻塞住的。
2.内存管理方面
Memcached使用预分配的内存池的方式,使用slab和大小不同的chunk来管理内存,Item根据大小选择合适的chunk存储,内
存池的方式可以省去申请/释放内存的开销,并且能减小内存碎片产生,但这种方式也会带来一定程度上的空间浪费,并且在内存仍然有很大空间时,新的数据也可
能会被剔除,原因可以参考Timyang的文章:
Redis使用现场申请内存的方式来存储数据,并且很少使用free-list等方式来优化内存分配,会在一定程度上存在内存碎片,Redis
跟据存储命令参数,会把带过期时间的数据单独存放在一起,并把它们称为临时数据,非临时数据是永远不会被剔除的,即便物理内存不够,导致swap也不会剔
除任何非临时数据(但会尝试剔除部分临时数据),这点上Redis更适合作为存储而不是cache。
3.数据一致性问题
Memcached提供了cas命令,可以保证多个并发访问操作同一份数据的一致性问题。 Redis没有提供cas 命令,并不能保证这点,不过Redis提供了事务的功能,可以保证一串 命令的原子性,中间不会被任何操作打断。
4.存储方式及其它方面
Memcached基本只支持简单的key-value存储,不支持枚举,不支持持久化和复制等功能
Redis除key/value之外,还支持list,set,sorted set,hash等众多数据结构,提供了KEYS
进行枚举操作,但不能在线上使用,如果需要枚举线上数据,Redis提供了工具可以直接扫描其dump文件,枚举出所有数据,Redis还同时提供了持久化和复制等功能。
5.关于不同语言的客户端支持
在不同语言的客户端方面,Memcached和Redis都有丰富的第三方客户端可供选择,不过因为Memcached发展的时间更久一些,目
前看在客户端支持方面,Memcached的很多客户端更加成熟稳定,而Redis由于其协议本身就比Memcached复杂,加上作者不断增加新的功能
等,对应第三方客户端跟进速度可能会赶不上,有时可能需要自己在第三方客户端基础上做些修改才能更好的使用。
根据以上比较不难看出,当我们不希望数据被踢出,或者需要除key/value之外的更多数据类型时,或者需要落地功能时,使用Redis比使用Memcached更合适。
关于Redis的一些周边功能
Redis除了作为存储之外还提供了一些其它方面的功能,比如聚合计算、pubsub、scripting等,对于此类功能需要了解其实现原
理,清楚地了解到它的局限性后,才能正确的使用,比如pubsub功能,这个实际是没有任何持久化支持的,消费方连接闪断或重连之间过来的消息是会全部丢
失的,又比如聚合计算和scripting等功能受Redis单线程模型所限,是不可能达到很高的吞吐量的,需要谨慎使用。
总的来说Redis作者是一位非常勤奋的开发者,可以经常看到作者在尝试着各种不同的新鲜想法和思路,针对这些方面的功能就要求我们需要深入了解后再使用。
总结:
1.Redis使用最佳方式是全部数据in-memory。
2.Redis更多场景是作为Memcached的替代者来使用。
3.当需要除key/value之外的更多数据类型支持时,使用Redis更合适。
4.当存储的数据不能被剔除时,使用Redis更合适。
谈谈Memcached与Redis(一)
1. Memcached简介
Memcached是以LiveJurnal旗下Danga Interactive公司的Bard
Fitzpatric为首开发的高性能分布式内存缓存服务器。其本质上就是一个内存key-value数据库,但是不支持数据的持久化,服务器关闭之后数
据全部丢失。Memcached使用C语言开发,在大多数像Linux、BSD和Solaris等POSIX系统上,只要安装了libevent即可使
用。在Windows下,它也有一个可用的非官方版本()。Memcached
的客户端软件实现非常多,包括C/C++, PHP, Java, Python, Ruby, Perl, Erlang,
Lua等。当前Memcached使用广泛,除了LiveJournal以外还有Wikipedia、Flickr、Twitter、Youtube和
WordPress等。
在Window系统下,Memcached的安装非常方便,只需从以上给出的地址下载可执行软件然后运行memcached.exe –d
install即可完成安装。在Linux等系统下,我们首先需要安装libevent,然后从获取源码,make make
install即可。默认情况下,Memcached的服务器启动程序会安装到/usr/local/bin目录下。在启动Memcached时,我们可
以为其配置不同的启动参数。
1.1 Memcache配置
Memcached服务器在启动时需要对关键的参数进行配置,下面我们就看一看Memcached在启动时需要设定哪些关键参数以及这些参数的作用。
1)-p num Memcached的TCP监听端口,缺省配置为11211;
2)-U num Memcached的UDP监听端口,缺省配置为11211,为0时表示关闭UDP监听;
3)-s file Memcached监听的UNIX套接字路径;
4)-a mask 访问UNIX套接字的八进制掩码,缺省配置为0700;
5)-l addr 监听的服务器IP地址,默认为所有网卡;
6)-d 为Memcached服务器启动守护进程;
7)-r 最大core文件大小;
8)-u username 运行Memcached的用户,如果当前为root的话需要使用此参数指定用户;
9)-m num 分配给Memcached使用的内存数量,单位是MB;
10)-M 指示Memcached在内存用光的时候返回错误而不是使用LRU算法移除数据记录;
11)-c num 最大并发连数,缺省配置为1024;
12)-v –vv –vvv 设定服务器端打印的消息的详细程度,其中-v仅打印错误和警告信息,-vv在-v的基础上还会打印客户端的命令和相应,-vvv在-vv的基础上还会打印内存状态转换信息;
13)-f factor 用于设置chunk大小的递增因子;
14)-n bytes 最小的chunk大小,缺省配置为48个字节;
15)-t num Memcached服务器使用的线程数,缺省配置为4个;
16)-L 尝试使用大内存页;
17)-R 每个事件的最大请求数,缺省配置为20个;
18)-C 禁用CAS,CAS模式会带来8个字节的冗余;
2. Redis简介
Redis是一个开源的key-value存储系统。与Memcached类似,Redis将大部分数据存储在内存中,支持的数据类型包括:字
符串、哈希表、链表、集合、有序集合以及基于这些数据类型的相关操作。Redis使用C语言开发,在大多数像Linux、BSD和Solaris等
POSIX系统上无需任何外部依赖就可以使用。Redis支持的客户端语言也非常丰富,常用的计算机语言如C、C#、C++、Object-C、PHP、
Python、Java、Perl、Lua、Erlang等均有可用的客户端来访问Redis服务器。当前Redis的应用已经非常广泛,国内像新浪、淘
宝,国外像Flickr、Github等均在使用Redis的缓存服务。
Redis的安装非常方便,只需从获取源码,然后make make
install即可。默认情况下,Redis的服务器启动程序和客户端程序会安装到/usr/local/bin目录下。在启动Redis服务器时,我们
需要为其指定一个配置文件,缺省情况下配置文件在Redis的源码目录下,文件名为redis.conf。
php 如何将一个13m(60万行数据)的txt文件优雅的写入到数据库中
13M并不是太大,先全部存入数组(内存),然后使用SQL一次性导入(最好使用事务处理,数据库底层会自动优化);必要时可在导入前检查数据完备性,反正要点是尽量减少磁盘操作(太耗时)。
网页题目:PHP海量数据存储 php大量数据处理
当前网址:http://myzitong.com/article/hjsdsp.html