python计算auc的方法-创新互联
创新互联www.cdcxhl.cn八线动态BGP香港云服务器提供商,新人活动买多久送多久,划算不套路!
创新互联建站主营昆都仑网站建设的网络公司,主营网站建设方案,手机APP定制开发,昆都仑h5微信平台小程序开发搭建,昆都仑网站营销推广欢迎昆都仑等地区企业咨询小编给大家分享一下python计算auc的方法,希望大家阅读完这篇文章后大所收获,下面让我们一起去探讨吧!
1、安装scikit-learn
1.1 Scikit-learn 依赖
·Python (>= 2.6 or >= 3.3),
·NumPy (>= 1.6.1),
·SciPy (>= 0.9).
分别查看上述三个依赖的版本:
python -V
结果:
Python 2.7.3
python -c 'import scipy; print scipy.version.version'
scipy版本结果:
0.9.0
python -c "import numpy; print numpy.version.version"
numpy结果:
1.10.2
1.2 Scikit-learn安装
如果你已经安装了NumPy、SciPy和python并且均满足1.1中所需的条件,那么可以直接运行sudo
pip install - U scikit - learn
执行安装。
2、计算auc指标
import numpy as np from sklearn.metrics import roc_auc_score y_true = np.array([0, 0, 1, 1]) y_scores = np.array([0.1, 0.4, 0.35, 0.8]) roc_auc_score(y_true, y_scores)
输出:
0.75
3、计算roc曲线
import numpy as np from sklearn import metrics y = np.array([1, 1, 2, 2]) #实际值 scores = np.array([0.1, 0.4, 0.35, 0.8]) #预测值 fpr, tpr, thresholds = metrics.roc_curve(y, scores, pos_label=2) #pos_label=2,表示值为2的实际值为正样本 print fpr print tpr print thresholds
输出:
array([ 0. , 0.5, 0.5, 1. ]) array([ 0.5, 0.5, 1. , 1. ]) array([ 0.8 , 0.4 , 0.35, 0.1 ])
看完了这篇文章,相信你对python计算auc的方法有了一定的了解,想了解更多相关知识,欢迎关注创新互联-成都网站建设公司行业资讯频道,感谢各位的阅读!
分享文章:python计算auc的方法-创新互联
网页网址:http://myzitong.com/article/hohec.html