python适应度函数的简单介绍
python遗传算法目标函数怎么编
一、遗传算法介绍
创新互联公司专注为客户提供全方位的互联网综合服务,包含不限于成都做网站、网站制作、普兰店网络推广、微信小程序、普兰店网络营销、普兰店企业策划、普兰店品牌公关、搜索引擎seo、人物专访、企业宣传片、企业代运营等,从售前售中售后,我们都将竭诚为您服务,您的肯定,是我们最大的嘉奖;创新互联公司为所有大学生创业者提供普兰店建站搭建服务,24小时服务热线:13518219792,官方网址:www.cdcxhl.com
遗传算法是通过模拟大自然中生物进化的历程,来解决问题的。大自然中一个种群经历过若干代的自然选择后,剩下的种群必定是适应环境的。把一个问题所有的解看做一个种群,经历过若干次的自然选择以后,剩下的解中是有问题的最优解的。当然,只能说有最优解的概率很大。这里,我们用遗传算法求一个函数的最大值。
f(x) = 10 * sin( 5x ) + 7 * cos( 4x ), 0 = x = 10
1、将自变量x进行编码
取基因片段的长度为10, 则10位二进制位可以表示的范围是0到1023。基因与自变量转变的公式是x = b2d(individual) * 10 / 1023。构造初始的种群pop。每个个体的基因初始值是[0, 1, 0, 1, 0, 1, 0, 1, 0, 1]
2、计算目标函数值
根据自变量与基因的转化关系式,求出每个个体的基因对应的自变量,然后将自变量代入函数f(x),求出每个个体的目标函数值。
3、适应度函数
适应度函数是用来评估个体适应环境的能力,是进行自然选择的依据。本题的适应度函数直接将目标函数值中的负值变成0. 因为我们求的是最大值,所以要使目标函数值是负数的个体不适应环境,使其繁殖后代的能力为0.适应度函数的作用将在自然选择中体现。
4、自然选择
自然选择的思想不再赘述,操作使用轮盘赌算法。其具体步骤:
假设种群中共5个个体,适应度函数计算出来的个体适应性列表是fitvalue = [1 ,3, 0, 2, 4] ,totalvalue = 10 , 如果将fitvalue画到圆盘上,值的大小表示在圆盘上的面积。在转动轮盘的过程中,单个模块的面积越大则被选中的概率越大。选择的方法是将fitvalue转化为[1 , 4 ,4 , 6 ,10], fitvalue / totalvalue = [0.1 , 0.4 , 0.4 , 0.6 , 1.0] . 然后产生5个0-1之间的随机数,将随机数从小到大排序,假如是[0.05 , 0.2 , 0.7 , 0.8 ,0.9],则将0号个体、1号个体、4号个体、4号个体、4号个体拷贝到新种群中。自然选择的结果使种群更符合条件了。
5、繁殖
假设个体a、b的基因是
a = [1, 0, 0, 0, 0, 1, 1, 1, 0, 0]
b = [0, 0, 0, 1, 1, 0, 1, 1, 1, 1]
这两个个体发生基因交换的概率pc = 0.6.如果要发生基因交换,则产生一个随机数point表示基因交换的位置,假设point = 4,则:
a = [1, 0, 0, 0, 0, 1, 1, 1, 0, 0]
b = [0, 0, 0, 1, 1, 0, 1, 1, 1, 1]
交换后为:
a = [1, 0, 0, 0, 1, 0, 1, 1, 1, 1]
b = [0, 0, 0, 1, 0, 1, 1, 1, 0, 0]
6、突变
遍历每一个个体,基因的每一位发生突变(0变为1,1变为0)的概率为0.001.突变可以增加解空间
二、代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
def b2d(b): #将二进制转化为十进制 x∈[0,10] t = 0 for j in range(len(b)): t += b[j] * (math.pow(2, j)) t = t * 10 / 1023 return tpopsize = 50 #种群的大小#用遗传算法求函数最大值:#f(x)=10*sin(5x)+7*cos(4x) x∈[0,10]chromlength = 10 #基因片段的长度pc = 0.6 #两个个体交叉的概率pm = 0.001; #基因突变的概率results = [[]]bestindividual = []bestfit = 0fitvalue = []tempop = [[]]pop = [[0, 1, 0, 1, 0, 1, 0, 1, 0, 1] for i in range(popsize)]for i in range(100): #繁殖100代 objvalue = calobjvalue(pop) #计算目标函数值 fitvalue = calfitvalue(objvalue); #计算个体的适应值 [bestindividual, bestfit] = best(pop, fitvalue) #选出最好的个体和最好的函数值 results.append([bestfit,b2d(bestindividual)]) #每次繁殖,将最好的结果记录下来 selection(pop, fitvalue) #自然选择,淘汰掉一部分适应性低的个体 crossover(pop, pc) #交叉繁殖 mutation(pop, pc) #基因突变 results.sort() print(results[-1]) #打印函数最大值和对应的
来自CODE的代码片
GA.py
1
2
3
4
5
6
7
8
9
def best(pop, fitvalue): #找出适应函数值中最大值,和对应的个体 px = len(pop) bestindividual = [] bestfit = fitvalue[0] for i in range(1,px): if(fitvalue[i] bestfit): bestfit = fitvalue[i] bestindividual = pop[i] return [bestindividual, bestfit]
来自CODE的代码片
best.py
1
2
3
4
5
6
7
8
9
10
11
def calfitvalue(objvalue):#转化为适应值,目标函数值越大越好,负值淘汰。 fitvalue = [] temp = 0.0 Cmin = 0; for i in range(len(objvalue)): if(objvalue[i] + Cmin 0): temp = Cmin + objvalue[i] else: temp = 0.0 fitvalue.append(temp) return fitvalue
来自CODE的代码片
calfitvalue.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
import mathdef decodechrom(pop): #将种群的二进制基因转化为十进制(0,1023) temp = []; for i in range(len(pop)): t = 0; for j in range(10): t += pop[i][j] * (math.pow(2, j)) temp.append(t) return tempdef calobjvalue(pop): #计算目标函数值 temp1 = []; objvalue = []; temp1 = decodechrom(pop) for i in range(len(temp1)): x = temp1[i] * 10 / 1023 #(0,1023)转化为 (0,10) objvalue.append(10 * math.sin(5 * x) + 7 * math.cos(4 * x)) return objvalue #目标函数值objvalue[m] 与个体基因 pop[m] 对应
来自CODE的代码片
calobjvalue.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
import randomdef crossover(pop, pc): #个体间交叉,实现基因交换 poplen = len(pop) for i in range(poplen - 1): if(random.random() pc): cpoint = random.randint(0,len(pop[0])) temp1 = [] temp2 = [] temp1.extend(pop[i][0 : cpoint]) temp1.extend(pop[i+1][cpoint : len(pop[i])]) temp2.extend(pop[i+1][0 : cpoint]) temp2.extend(pop[i][cpoint : len(pop[i])]) pop[i] = temp1 pop[i+1] = temp2
来自CODE的代码片
crossover.py
1
2
3
4
5
6
7
8
9
10
11
12
13
import randomdef mutation(pop, pm): #基因突变 px = len(pop) py = len(pop[0]) for i in range(px): if(random.random() pm): mpoint = random.randint(0,py-1) if(pop[i][mpoint] == 1): pop[i][mpoint] = 0 else: pop[i][mpoint] = 1
来自CODE的代码片
mutation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
import randomdef sum(fitvalue): total = 0 for i in range(len(fitvalue)): total += fitvalue[i] return totaldef cumsum(fitvalue): for i in range(len(fitvalue)): t = 0; j = 0; while(j = i): t += fitvalue[j] j = j + 1 fitvalue[i] = t;def selection(pop, fitvalue): #自然选择(轮盘赌算法) newfitvalue = [] totalfit = sum(fitvalue) for i in range(len(fitvalue)): newfitvalue.append(fitvalue[i] / totalfit) cumsum(newfitvalue) ms = []; poplen = len(pop) for i in range(poplen): ms.append(random.random()) #random float list ms ms.sort() fitin = 0 newin = 0 newpop = pop while newin poplen: if(ms[newin] newfitvalue[fitin]): newpop[newin] = pop[fitin] newin = newin + 1 else: fitin = fitin + 1 pop = newpop
Python的函数都有哪些
【常见的内置函数】
1、enumerate(iterable,start=0)
是python的内置函数,是枚举、列举的意思,对于一个可迭代的(iterable)/可遍历的对象(如列表、字符串),enumerate将其组成一个索引序列,利用它可以同时获得索引和值。
2、zip(*iterables,strict=False)
用于将可迭代的对象作为参数,将对象中对应的元素打包成一个个元组,然后返回由这些元组组成的列表。如果各个迭代器的元素个数不一致,则返回列表长度与最短的对象相同,利用*号操作符,可以将元组解压为列表。
3、filter(function,iterable)
filter是将一个序列进行过滤,返回迭代器的对象,去除不满足条件的序列。
4、isinstance(object,classinfo)
是用来判断某一个变量或者是对象是不是属于某种类型的一个函数,如果参数object是classinfo的实例,或者object是classinfo类的子类的一个实例,
返回True。如果object不是一个给定类型的的对象, 则返回结果总是False
5、eval(expression[,globals[,locals]])
用来将字符串str当成有效的表达式来求值并返回计算结果,表达式解析参数expression并作为Python表达式进行求值(从技术上说是一个条件列表),采用globals和locals字典作为全局和局部命名空间。
【常用的句式】
1、format字符串格式化
format把字符串当成一个模板,通过传入的参数进行格式化,非常实用且强大。
2、连接字符串
常使用+连接两个字符串。
3、if...else条件语句
Python条件语句是通过一条或多条语句的执行结果(True或者False)来决定执行的代码块。其中if...else语句用来执行需要判断的情形。
4、for...in、while循环语句
循环语句就是遍历一个序列,循环去执行某个操作,Python中的循环语句有for和while。
5、import导入其他脚本的功能
有时需要使用另一个python文件中的脚本,这其实很简单,就像使用import关键字导入任何模块一样。
Python算法中如何添加平均适应度图
今天整理之前写的代码,发现在做数模期间写的用python实现的遗传算法,感觉还是挺有意思的,就拿出来分享一下。
首先遗传算法是一种优化算法,通过模拟基因的优胜劣汰,进行计算(具体的算法思路什么的就不赘述了)。大致过程分为初始化编码、个体评价、选择,交叉,变异。
遗传算法介绍
遗传算法是通过模拟大自然中生物进化的历程,来解决问题的。大自然中一个种群经历过若干代的自然选择后,剩下的种群必定是适应环境的。把一个问题所有的解看做一个种群,经历过若干次的自然选择以后,剩下的解中是有问题的最优解的。当然,只能说有最优解的概率很大。这里,我们用遗传算法求一个函数的最大值。
f(x) = 10 * sin( 5x ) 7 * cos( 4x ), 0 = x = 10
1、将自变量x进行编码
取基因片段的长度为10, 则10位二进制位可以表示的范围是0到1023。基因与自变量转变的公式是x = b2d(individual) * 10 / 1023。构造初始的种群pop。每个个体的基因初始值是[0, 1, 0, 1, 0, 1, 0, 1, 0, 1]
2、计算目标函数值
根据自变量与基因的转化关系式,求出每个个体的基因对应的自变量,然后将自变量代入函数f(x),求出每个个体的目标函数值。
3、适应度函数
适应度函数是用来评估个体适应环境的能力,是进行自然选择的依据。本题的适应度函数直接将目标函数值中的负值变成0. 因为我们求的是最大值,所以要使目标函数值是负数的个体不适应环境,使其繁殖后代的能力为0.适应度函数的作用将在自然选择中体现。
4、自然选择
自然选择的思想不再赘述,操作使用轮盘赌算法。其具体步骤:
假设种群中共5个个体,适应度函数计算出来的个体适应性列表是fitvalue = [1 ,3, 0, 2, 4] ,totalvalue = 10 , 如果将fitvalue画到圆盘上,值的大小表示在圆盘上的面积。在转动轮盘的过程中,单个模块的面积越大则被选中的概率越大。选择的方法是将fitvalue转化为[1 , 4 ,4 , 6 ,10], fitvalue / totalvalue = [0.1 , 0.4 , 0.4 , 0.6 , 1.0] . 然后产生5个0-1之间的随机数,将随机数从小到大排序,假如是[0.05 , 0.2 , 0.7 , 0.8 ,0.9],则将0号个体、1号个体、4号个体、4号个体、4号个体拷贝到新种群中。自然选择的结果使种群更符合条件了。
5、繁殖
假设个体a、b的基因是
a = [1, 0, 0, 0, 0, 1, 1, 1, 0, 0]
b = [0, 0, 0, 1, 1, 0, 1, 1, 1, 1]
这两个个体发生基因交换的概率pc = 0.6.如果要发生基因交换,则产生一个随机数point表示基因交换的位置,假设point = 4,则:
a = [1, 0, 0, 0, 0, 1, 1, 1, 0, 0]
b = [0, 0, 0, 1, 1, 0, 1, 1, 1, 1]
交换后为:
a = [1, 0, 0, 0, 1, 0, 1, 1, 1, 1]
b = [0, 0, 0, 1, 0, 1, 1, 1, 0, 0]
6、突变
遍历每一个个体,基因的每一位发生突变(0变为1,1变为0)的概率为0.001.突变可以增加解空间
以目标式子 y = 10 * sin(5x) 7 * cos(4x)为例,计算其最大值
首先是初始化,包括具体要计算的式子、种群数量、染色体长度、交配概率、变异概率等。并且要对基因序列进行初始化
pop_size = 500 # 种群数量
max_value = 10 # 基因中允许出现的最大值
chrom_length = 10 # 染色体长度
pc = 0.6 # 交配概率
pm = 0.01 # 变异概率
results = [[]] # 存储每一代的最优解,N个二元组
fit_value = [] # 个体适应度
fit_mean = [] # 平均适应度
pop = geneEncoding(pop_size, chrom_length)
其中genEncodeing是自定义的一个简单随机生成序列的函数,具体实现如下
def geneEncoding(pop_size, chrom_length):
pop = [[]]
for i in range(pop_size):
temp = []
for j in range(chrom_length):
temp.append(random.randint(0, 1))
pop.append(temp)
return pop[1:]
编码完成之后就是要进行个体评价,个体评价主要是计算各个编码出来的list的值以及对应带入目标式子的值。其实编码出来的就是一堆2进制list。这些2进制list每个都代表了一个数。其值的计算方式为转换为10进制,然后除以2的序列长度次方减一,也就是全一list的十进制减一。根据这个规则就能计算出所有list的值和带入要计算式子中的值,代码如下
# 0.0 coding:utf-8 0.0
名称栏目:python适应度函数的简单介绍
当前链接:http://myzitong.com/article/hoojgs.html