Pythoncollections中双向队列deque的示例分析-创新互联
这篇文章将为大家详细讲解有关Python collections中双向队列deque的示例分析,小编觉得挺实用的,因此分享给大家做个参考,希望大家阅读完这篇文章后可以有所收获。
成都创新互联是专业的宝塔网站建设公司,宝塔接单;提供网站设计、网站制作,网页设计,网站设计,建网站,PHP网站建设等专业做网站服务;采用PHP框架,可快速的进行宝塔网站开发网页制作和功能扩展;专业做搜索引擎喜爱的网站,专业的做网站团队,希望更多企业前来合作!简单使用
基本代码
from collections import deque q = deque(maxlen=4)#有固定长度的双向队列 qq = deque() #无固定长度 print(dir(q))#看看有哪些可用方法或属性
结果:
['__add__', '__bool__', '__class__', '__contains__', '__copy__', '__delattr__', '__delitem__', '__dir__', '__doc__', '__eq__', '__format__', '__ge__', '__getattribute__', '__getitem__', '__gt__', '__hash__', '__iadd__', '__imul__', '__init__', '__init_subclass__', '__iter__', '__le__', '__len__', '__lt__', '__mul__', '__ne__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__reversed__', '__rmul__', '__setattr__', '__setitem__', '__sizeof__', '__str__', '__subclasshook__', 'append', 'appendleft', 'clear', 'copy', 'count', 'extend', 'extendleft', 'index', 'insert', 'maxlen', 'pop', 'popleft', 'remove', 'reverse', 'rotate']
看到可以append,pop,insert,clear等,还可以像List一样用中括号 [] 对某个index获取或设置值。因为是双向队列,所以也有左操作函数:appendleft,popleft。额外的还要反转函数reverse,计数函数count。
使用ipython验证
In [1]: from collections import deque …: q = deque(maxlen=4)#有固定长度的双向队列 …: qq = deque() #无固定长度 …: print(dir(q))#看看有哪些可用方法或属性 [‘add', ‘bool', ‘class', ‘contains', ‘copy', ‘delattr', ‘delitem', ‘dir', ‘doc', ‘eq', ‘format', ‘ge', ‘getattribute', ‘getitem', ‘gt', ‘hash', ‘iadd', ‘imul', ‘init', ‘init_subclass', ‘iter', ‘le', ‘len', ‘lt', ‘mul', ‘ne', ‘new', ‘reduce', ‘reduce_ex', ‘repr', ‘reversed', ‘rmul', ‘setattr', ‘setitem', ‘sizeof', ‘str', ‘subclasshook', ‘append', ‘appendleft', ‘clear', ‘copy', ‘count', ‘extend', ‘extendleft', ‘index', ‘insert', ‘maxlen', ‘pop', ‘popleft', ‘remove', ‘reverse', ‘rotate'] In [2]: q Out[2]: deque([]) In [3]: q.append(1) In [4]: q.insert(0,33) In [6]: q Out[6]: deque([33, 1]) In [8]: q.appendleft(44) In [9]: q Out[9]: deque([44, 33, 1]) In [10]: q.pop() Out[10]: 1 In [12]: q[1] Out[12]: 33 In [13]: q Out[13]: deque([44, 33]) In [14]: q.reverse() In [15]: q Out[15]: deque([33, 44]) In [17]: q.clear() In [18]: q Out[18]: deque([])
性能测试
pop和append
#coding:utf8 import datetime,time from collections import deque D = deque() L=[] def calcTime(func): def doCalcTime(): sst = int(time.time()*1000) func() eed = int(time.time()*1000) print(func,'cost time:',eed-sst,'ms') return doCalcTime @calcTime def didDeque(): for i in range(0,10000000): D.append(i) while D: D.pop() @calcTime def didList(): for i in range(0,10000000): L.append(i) while L: L.pop() if __name__=='__main__': didDeque() print("------------") didList()
运行结果:
cost time: 1924 ms
------------cost time: 2420 ms
是快了一些。
insert
#coding:utf8 import datetime,time from collections import deque D = deque() L=[] def calcTime(func): def doCalcTime(): sst = int(time.time()*1000) func() eed = int(time.time()*1000) print(func,'cost time:',eed-sst,'ms') return doCalcTime @calcTime def didDeque(): for i in range(0,100000): D.insert(5,i) @calcTime def didList(): for i in range(0,100000): L.insert(5,i) if __name__=='__main__': didDeque() print("------------") didList()
运行结果:
cost time: 32 ms
------------cost time: 3499 ms
快了两个数量级。想想也明白,一个是链表,插入的时候只需要改变指针指向,而List是连续空间,需要移动一大堆的元素。
计算移动平均
>>> import numpy as np >>> from collections import deque >>> q=deque(maxlen=5) >>> q.append(1) >>> q.append(2) >>> q.append(3) >>> q.append(4) >>> q.append(5) >>> q.append(6) >>> q deque([2, 3, 4, 5, 6], maxlen=5) >>> np.array(q).mean() 4.0
关于“Python collections中双向队列deque的示例分析”这篇文章就分享到这里了,希望以上内容可以对大家有一定的帮助,使各位可以学到更多知识,如果觉得文章不错,请把它分享出去让更多的人看到。
分享名称:Pythoncollections中双向队列deque的示例分析-创新互联
网站链接:http://myzitong.com/article/hpsid.html