python的plt函数,python pltplot函数
Python设置matplotlib.plot的坐标轴刻度间隔以及刻度范围
import matplotlib.pyplot as plt
成都创新互联是一家专注于成都网站建设、成都做网站与策划设计,图木舒克网站建设哪家好?成都创新互联做网站,专注于网站建设10年,网设计领域的专业建站公司;建站业务涵盖:图木舒克等地区。图木舒克做网站价格咨询:18980820575
x_values=list(range(11)) #x轴的数字是0到10这11个整数
y_values=[x**2forx inx_values] #y轴的数字是x轴数字的平方
plt.plot(x_values,y_values,c='green') #用plot函数绘制折线图,线条颜色设置为绿色
plt.title('Squares',fontsize=24) #设置图表标题和标题字号
plt.tick_params(axis='both',which='major',labelsize=14) #设置刻度的字号
plt.xlabel('Numbers',fontsize=14) #设置x轴标签及其字号
plt.ylabel('Squares',fontsize=14) #设置y轴标签及其字号
plt.show()
import matplotlib.pyplot as plt
from matplotlib.pyplot import MultipleLocator
#从pyplot导入MultipleLocator类,这个类用于设置刻度间隔
x_values=list(range(11))
y_values=[x**2forx inx_values]
plt.plot(x_values,y_values,c='green')
plt.title('Squares',fontsize=24)
plt.tick_params(axis='both',which='major',labelsize=14)
plt.xlabel('Numbers',fontsize=14)
plt.ylabel('Squares',fontsize=14)
x_major_locator=MultipleLocator(1) #把x轴的刻度间隔设置为1,并存在变量里
y_major_locator=MultipleLocator(10) #把y轴的刻度间隔设置为10,并存在变量里
ax=plt.gca() #ax为两条坐标轴的实例
ax.xaxis.set_major_locator(x_major_locator) #把x轴的主刻度设置为1的倍数
ax.yaxis.set_major_locator(y_major_locator) #把y轴的主刻度设置为10的倍数
plt.xlim(-0.5,11) #把x轴的刻度范围设置为-0.5到11,因为0.5不满一个刻度间隔,所以数字不会显示出来,但是能看到一点空白
plt.ylim(-5,110) #把y轴的刻度范围设置为-5到110,同理,-5不会标出来,但是能看到一点空白
plt.show()
python中plot怎么设置横纵坐标名称
用plot画二维图像时,默认情况下的横坐标和纵坐标显示的值有时达不到自己的需求,需要借助xticks()和yticks()分别对横坐标x-axis和纵坐标y-axis进行设置。
import numpy as np
import matplotlib.pyplot as plt
x = range(1,13,1)
y = range(1,13,1)
plt.plot(x,y)
plt.show()
此时的x轴和y轴都是只显示偶数,其它的奇数未显示,这样在展示实验效果或放入文章中都会影响其可读性。
为了设置坐标轴的值,增加其可读性,有多种方法。这里介绍的是matplotlib的函数xticks()和yticks()。
扩展资料
基本用法:
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
# 生成x轴上的数据:从-3到3,总共有50个点
x = np.linspace(-1, 1, 50)
# 定义一个线性方程
y1 = 2 * x + 1
# 定义一个二次方程
y2 = x ** 2
# 设置x轴的取值范围为:-1到2
plt.xlim(-1, 2)
# 设置y轴的取值范围为:-1到3
plt.ylim(-1, 3)
# 设置x轴的文本,用于描述x轴代表的是什么
plt.xlabel("I am x")
# 设置y轴的文本,用于描述y轴代表的是什么
plt.ylabel("I am y")
plt.plot(x, y2)
# 绘制红色的线宽为1虚线的线条
plt.plot(x, y1, color='red', linewidth=1.0, linestyle='--')
# 显示图表
plt.show()
参考资料来源:
百度百科——plot
Python气象数据处理与绘图(18):泰勒图
泰勒图绘制的核心思想是设计一个只有第一象限的极坐标,并将方差,相关系数进行捆绑,通过转化为极坐标系坐标进行绘制。为了实现泰勒图的绘制,我设计了两个函数:
set_tayloraxes(fig, location=111) 和plot_taylor(axes, refsample, sample, args, *kwargs)
set_tayloraxes()函数用于建立一个泰勒图的坐标系,这个自定义函数一般情况下不建议修改,每一个参数都是经过多次调试得到的,很可能牵一发动全身。因此,将绘图部分的独立成为了plot_taylor函数(),这部分函数较为简单,目的就是将需要绘图的数据,转换为极坐标系坐标,通过plot函数将散点打在泰勒图上,这个函数模块较为简单,可以根据自己的输入数据情况进行调整。
下面介绍下函数的具体用法:
输入:
fig: 需要绘图的figure
rect:图的位置,如111为1行1列第一个,122为1行2列第2个
输出:
polar_ax:泰勒坐标系
输入:
axes : setup_axes返回的泰勒坐标系
refsample :参照样本
sample :评估样本
args, *kwargs :plt.plot()函数的相关参数,设置点的颜色,形状等等。
下面给出示例:
用Python设置matplotlib.plot的坐标轴刻度间隔以及刻度范围
转自 跳转链接
一、用默认设置绘制折线图
import matplotlib.pyplot as plt
x_values=list(range(11))
#x轴的数字是0到10这11个整数
y_values=[x**2 for x in x_values]
#y轴的数字是x轴数字的平方
plt.plot(x_values,y_values,c='green')
#用plot函数绘制折线图,线条颜色设置为绿色
plt.title('Squares',fontsize=24)
#设置图表标题和标题字号
plt.tick_params(axis='both',which='major',labelsize=14)
#设置刻度的字号
plt.xlabel('Numbers',fontsize=14)
#设置x轴标签及其字号
plt.ylabel('Squares',fontsize=14)
#设置y轴标签及其字号
plt.show()
#显示图表
制作出图表
我们希望x轴的刻度是0,1,2,3,4……,y轴的刻度是0,10,20,30……,并且希望两个坐标轴的范围都能再大一点,所以我们需要手动设置。
二、手动设置坐标轴刻度间隔以及刻度范围
import matplotlib.pyplot as plt
from matplotlib.pyplot import MultipleLocator
#从pyplot导入MultipleLocator类,这个类用于设置刻度间隔
x_values=list(range(11))
y_values=[x**2 for x in x_values]
plt.plot(x_values,y_values,c='green')
plt.title('Squares',fontsize=24)
plt.tick_params(axis='both',which='major',labelsize=14)
plt.xlabel('Numbers',fontsize=14)
plt.ylabel('Squares',fontsize=14)
x_major_locator=MultipleLocator(1)
#把x轴的刻度间隔设置为1,并存在变量里
y_major_locator=MultipleLocator(10)
#把y轴的刻度间隔设置为10,并存在变量里
ax=plt.gca()
#ax为两条坐标轴的实例
ax.xaxis.set_major_locator(x_major_locator)
#把x轴的主刻度设置为1的倍数
ax.yaxis.set_major_locator(y_major_locator)
#把y轴的主刻度设置为10的倍数
plt.xlim(-0.5,11)
#把x轴的刻度范围设置为-0.5到11,因为0.5不满一个刻度间隔,所以数字不会显示出来,但是能看到一点空白
plt.ylim(-5,110)
#把y轴的刻度范围设置为-5到110,同理,-5不会标出来,但是能看到一点空白
plt.show()
绘制结果
当前题目:python的plt函数,python pltplot函数
URL网址:http://myzitong.com/article/hsjhcs.html