JavaScript浮点数陷阱及解法是什么
本篇内容介绍了“JavaScript浮点数陷阱及解法是什么”的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!
10年积累的成都网站制作、成都做网站、外贸营销网站建设经验,可以快速应对客户对网站的新想法和需求。提供各种问题对应的解决方案。让选择我们的客户得到更好、更有力的网络服务。我虽然不认识你,你也不认识我。但先网站制作后付款的网站建设流程,更有红山免费网站建设让你可以放心的选择与我们合作。
浮点数的存储
首先要搞清楚 JavaScript 如何存储小数。和其它语言如 Java 和 Python 不同,JavaScript 中所有数字包括整数和小数都只有一种类型 — Number。它的实现遵循 IEEE 754 标准,使用 64 位固定长度来表示,也就是标准的 double 双精度浮点数(相关的还有float 32位单精度)。计算机组成原理中有过详细介绍,如果你不记得也没关系。
这样的存储结构优点是可以归一化处理整数和小数,节省存储空间。
64位比特又可分为三个部分:
符号位S:第 1 位是正负数符号位(sign),0代表正数,1代表负数
指数位E:中间的 11 位存储指数(exponent),用来表示次方数
尾数位M:***的 52 位是尾数(mantissa),超出的部分自动进一舍零
实际数字就可以用以下公式来计算:
$ V = (-1)^{S}\times M \times 2^{E} $
注意以上的公式遵循科学计数法的规范,在十进制是为0M = 001。E是一个无符号整数,因为长度是11位,取值范围是 0~2047。但是科学计数法中的指数是可以为负数的,所以再减去一个中间数 1023,[0,1022]表示为负,[1024,2047] 表示为正。如4.5 的指数E = 1025,尾数M为 001。
最终的公式变成:
$ V = (-1)^{S}\times (M+1) \times 2^{E-1023} $
所以 4.5 最终表示为(M=001、E=1025):
(图片由此生成 http://www.binaryconvert.com/convert_double.html)
下面再以 0.1 例解释浮点误差的原因, 0.1 转成二进制表示为 0.0001100110011001100(1100循环),1.100110011001100x2^-4,所以 E=-4+1023=1019;M 舍去首位的1,得到 100110011...。最终就是:
转化成十进制后为 0.100000000000000005551115123126,因此就出现了浮点误差。
为什么 0.1+0.2=0.30000000000000004?
计算步骤为:
// 0.1 和 0.2 都转化成二进制后再进行运算 0.00011001100110011001100110011001100110011001100110011010 + 0.0011001100110011001100110011001100110011001100110011010 = 0.0100110011001100110011001100110011001100110011001100111 // 转成十进制正好是 0.30000000000000004
为什么 x=0.1 能得到 0.1?
恭喜你到了看山不是山的境界。因为 mantissa 固定长度是 52 位,再加上省略的一位,最多可以表示的数是 2^53=9007199254740992,对应科学计数尾数是 9.007199254740992,这也是 JS 最多能表示的精度。它的长度是 16,所以可以使用 toPrecision(16) 来做精度运算,超过的精度会自动做凑整处理。于是就有:
0.10000000000000000555.toPrecision(16) // 返回 0.1000000000000000,去掉末尾的零后正好为 0.1 // 但你看到的 `0.1` 实际上并不是 `0.1`。不信你可用更高的精度试试: 0.1.toPrecision(21) = 0.100000000000000005551
大数危机
可能你已经隐约感觉到了,如果整数大于 9007199254740992 会出现什么情况呢?
由于 M ***值是 1023,所以***可以表示的整数是 2^1024 - 1。这就是能表示的***整数。但你并不能这样计算这个数字,因为从 2^1024 开始就变成了 Infinity
> Math.pow(2, 1023) 8.98846567431158e+307 > Math.pow(2, 1024) Infinity
那么对于 (2^53, 2^63) 之间的数会出现什么情况呢?
(2^53, 2^54) 之间的数会两个选一个,只能精确表示偶数
(2^54, 2^55) 之间的数会四个选一个,只能精确表示4个倍数
… 依次跳过更多2的倍数
下面这张图能很好的表示 JavaScript 中浮点数和实数(Real Number)之间的对应关系。我们常用的 (-2^53, 2^53) 只是最中间非常小的一部分,越往两边越稀疏越不精确。
在淘宝早期的订单系统中把订单号当作数字处理,后来随意订单号暴增,已经超过了
9007199254740992,最终的解法是把订单号改成字符串处理。
要想解决大数的问题你可以引用第三方库 bignumber.js,原理是把所有数字当作字符串,重新实现了计算逻辑,缺点是性能比原生的差很多。所以原生支持大数就很有必要了,现在 TC39 已经有一个 Stage 3 的提案 proposal bigint,大数问题有问彻底解决。
toPrecision vs toFixed
数据处理时,这两个函数很容易混淆。它们的共同点是把数字转成字符串供展示使用。注意在计算的中间过程不要使用,只用于最终结果。
不同点就需要注意一下:
toPrecision 是处理精度,精度是从左至右***个不为0的数开始数起。
toFixed 是小数点后指定位数取整,从小数点开始数起。
两者都能对多余数字做凑整处理,也有些人用 toFixed 来做四舍五入,但一定要知道它是有 Bug 的。
如:1.005.toFixed(2) 返回的是 1.00 而不是 1.01。
原因: 1.005 实际对应的数字是 1.00499999999999989,在四舍五入时全部被舍去!
解法:使用专业的四舍五入函数 Math.round() 来处理。但 Math.round(1.005 * 100) / 100 还是不行,因为 1.005 * 100 = 100.49999999999999。还需要把乘法和除法精度误差都解决后再使用 Math.round。可以使用后面介绍的 number-precision#round 方法来解决。
解决方案
回到最关心的问题:如何解决浮点误差。首先,理论上用有限的空间来存储***的小数是不可能保证精确的,但我们可以处理一下得到我们期望的结果。
数据展示类
当你拿到 1.4000000000000001 这样的数据要展示时,建议使用 toPrecision 凑整并 parseFloat 转成数字后再显示,如下:
parseFloat(1.4000000000000001.toPrecision(12)) === 1.4 // True
封装成方法就是:
function strip(num, precision = 12) { return +parseFloat(num.toPrecision(precision)); }
为什么选择 12 做为默认精度?这是一个经验的选择,一般选12就能解决掉大部分0001和0009问题,而且大部分情况下也够用了,如果你需要更精确可以调高。
数据运算类
对于运算类操作,如 +-*/,就不能使用 toPrecision 了。正确的做法是把小数转成整数后再运算。以加法为例:
/** * 精确加法 */ function add(num1, num2) { const num1Digits = (num1.toString().split('.')[1] || '').length; const num2Digits = (num2.toString().split('.')[1] || '').length; const baseNum = Math.pow(10, Math.max(num1Digits, num2Digits)); return (num1 * baseNum + num2 * baseNum) / baseNum; }
“JavaScript浮点数陷阱及解法是什么”的内容就介绍到这里了,感谢大家的阅读。如果想了解更多行业相关的知识可以关注创新互联网站,小编将为大家输出更多高质量的实用文章!
标题名称:JavaScript浮点数陷阱及解法是什么
本文路径:http://myzitong.com/article/iedips.html