boosting和bootstrap区别有哪些

小编给大家分享一下boosting和bootstrap区别有哪些,希望大家阅读完这篇文章后大所收获,下面让我们一起去探讨吧!

让客户满意是我们工作的目标,不断超越客户的期望值来自于我们对这个行业的热爱。我们立志把好的技术通过有效、简单的方式提供给客户,将通过不懈努力成为客户在信息化领域值得信任、有价值的长期合作伙伴,公司提供的服务项目有:域名与空间、虚拟空间、营销软件、网站建设、博山网站维护、网站推广。

bootstrap、boosting是机器学习中几种常用的重采样方法。其中bootstrap重采样方法主要用于统计量的估计,boosting方法则主要用于多个子分类器的组合。

bootstrap:估计统计量的重采样方法

bootstrap方法是从大小为n的原始训练数据集DD中随机选择n个样本点组成一个新的训练集,这个选择过程独立重复B次,然后用这B个数据集对模型统计量进行估计(如均值、方差等)。由于原始数据集的大小就是n,所以这B个新的训练集中不可避免的会存在重复的样本。

统计量的估计值定义为独立的B个训练集上的估计值θbθb的平均:

boosting和bootstrap区别有哪些

boosting:

boosting依次训练k个子分类器,最终的分类结果由这些子分类器投票决定。

首先从大小为n的原始训练数据集中随机选取n1n1个样本训练出第一个分类器,记为C1C1,然后构造第二个分类器C2C2的训练集D2D2,要求:D2D2中一半样本能被C1C1正确分类,而另一半样本被C1C1错分。

接着继续构造第三个分类器C3C3的训练集D3D3,要求:C1C1、C2C2对D3D3中样本的分类结果不同。剩余的子分类器按照类似的思路进行训练。

boosting构造新训练集的主要原则是使用最富信息的样本。

看完了这篇文章,相信你对boosting和bootstrap区别有哪些有了一定的了解,想了解更多相关知识,欢迎关注创新互联行业资讯频道,感谢各位的阅读!


名称栏目:boosting和bootstrap区别有哪些
浏览地址:http://myzitong.com/article/jehdgj.html