Rxjava有什么用-创新互联

小编给大家分享一下Rxjava有什么用,相信大部分人都还不怎么了解,因此分享这篇文章给大家参考一下,希望大家阅读完这篇文章后大有收获,下面让我们一起去了解一下吧!

成都创新互联公司是一家专注于成都网站设计、网站制作与策划设计,龙华网站建设哪家好?成都创新互联公司做网站,专注于网站建设十载,网设计领域的专业建站公司;建站业务涵盖:龙华等地区。龙华做网站价格咨询:028-86922220

官方的介绍

1.支持Java6+

2.android 2.3+

3.异步的

4.基于观察者设计模式(Observer、Observable)不懂设计模式的可以移步到此:浅谈Java设计模式(十五)观察者模式(Observer)

5.Subscribe (订阅)

正式使用RxJava

用框架或者库都是为了简洁、方便,RxJava也不例外它能使你的代码逻辑更加的简洁。举个例子之前我们先来引入依赖的 gradle 代码:

compile 'io.reactivex:rxjava:1.0.14'  
compile 'io.reactivex:rxandroid:1.0.1'

既然是基于异步,当然要在处理比较耗时的操作上才能彰显它的优势!现在我们假设有这样一个需求:

需要实现一个多个下载的图片并且显示的功能,它的作用可以添加多个下载操作,由于下载这一过程较为耗时,需要放在后台执行,而图片的显示则必须在 UI 线程执行。常用的实现方式有多种,我这里贴出其中一种:

new Thread() { 
  @Override 
  public void run() { 
    super.run(); 
    for (File folder : folders) { 
      File[] files = folder.listFiles(); 
      for (File file : files) { 
        if (file.getName().endsWith(".png")) { 
          final Bitmap bitmap = getBitmapFromFile(file); 
          getActivity().runOnUiThread(new Runnable() { 
            @Override 
            public void run() { 
              imageCollectorView.addImage(bitmap); 
            } 
          }); 
        } 
      } 
    } 
  } 
}.start();

里面的判断是不是看起来有点晕晕,当然这是我自己写的,我一眼就能看清楚里面的逻辑,但是如果换做是别人来阅读你的代码,这就比较的尴尬了!

我们来看看使用RxJava的代码:

Observable.from(folders) 
  .flatMap(new Func1>() { 
    @Override 
    public Observable call(File file) { 
      return Observable.from(file.listFiles()); 
    } 
  }) 
  .filter(new Func1() { 
    @Override 
    public Boolean call(File file) { 
      return file.getName().endsWith(".png"); 
    } 
  }) 
  .map(new Func1() { 
    @Override 
    public Bitmap call(File file) { 
      return getBitmapFromFile(file); 
    } 
  }) 
  .subscribeOn(Schedulers.io()) 
  .observeOn(AndroidSchedulers.mainThread()) 
  .subscribe(new Action1() { 
    @Override 
    public void call(Bitmap bitmap) { 
      imageCollectorView.addImage(bitmap); 
    } 
  });

是不是明了,虽然说算不上简单,但是习惯了就一如既往了!

如果你使用的AndroidStudio的话,你打开Java文件的时候,你会看到被自动 Lambda 化的预览,这将让你更加清晰地看到程序逻辑:

Observable.from(folders) 
  .flatMap((Func1) (folder) -> { Observable.from(file.listFiles()) }) 
  .filter((Func1) (file) -> { file.getName().endsWith(".png") }) 
  .map((Func1) (file) -> { getBitmapFromFile(file) }) 
  .subscribeOn(Schedulers.io()) 
  .observeOn(AndroidSchedulers.mainThread()) 
  .subscribe((Action1) (bitmap) -> { imageCollectorView.addImage(bitmap) });

不过如果你对Java8还不是很了解的话呢这一段可以暂时忽略,但是你可以移步到这里了解一下Java8:Java8部分新特性介绍

看完代码,是不是有种相见恨晚的冲动?别急,我们来慢慢了解RxJava!

前面已经提到他是基于Java观察者设计模式的,这个模式上面有给大家链接,可以去看看,这里不不坐过多的介绍,我们来介绍一下RxJava中的观察者模式:

RxJava 的观察者模式

一、说明

1)RxJava 有四个基本概念:Observable (可观察者,即被观察者)、 Observer (观察者)、 subscribe (订阅)、事件。Observable 和 Observer 通过 subscribe() 方法实现订阅关系,从而 Observable 可以在需要的时候发出事件来通知 Observer。

2)与传统观察者模式不同, RxJava 的事件回调方法除了普通事件 onNext() (相当于 onClick() / onEvent())之外,还定义了两个特殊的事件:onCompleted() 和 onError()。

3)onCompleted(): 事件队列完结。RxJava 不仅把每个事件单独处理,还会把它们看做一个队列。RxJava 规定,当不会再有新的 onNext() 发出时,需要触发 onCompleted() 方法作为标志。

4)onError(): 事件队列异常。在事件处理过程中出异常时,onError() 会被触发,同时队列自动终止,不允许再有事件发出。

5)在一个正确运行的事件序列中, onCompleted() 和 onError() 有且只有一个,并且是事件序列中的最后一个。需要注意的是,onCompleted() 和 onError() 二者也是互斥的,即在队列中调用了其中一个,就不应该再调用另一个。

二、实现

1) 创建 Observer

Observer 即观察者,它决定事件触发的时候将有怎样的行为。 RxJava 中的 Observer 接口的实现方式:

Observer observer = new Observer() { 
  @Override 
  public void onNext(String s) { 
    Log.d(tag, "Item: " + s); 
  } 
  @Override 
  public void onCompleted() { 
    Log.d(tag, "Completed!"); 
  } 
  @Override 
  public void onError(Throwable e) { 
    Log.d(tag, "Error!"); 
  } 
};

除了 Observer 接口之外,RxJava 还内置了一个实现了 Observer 的抽象类:Subscriber。 Subscriber 对 Observer 接口进行了一些扩展,但他们的基本使用方式是完全一样的:

Subscriber subscriber = new Subscriber() { 
  @Override 
  public void onNext(String s) { 
    Log.d(tag, "Item: " + s); 
  } 
  @Override 
  public void onCompleted() { 
    Log.d(tag, "Completed!"); 
  } 
  @Override 
  public void onError(Throwable e) { 
    Log.d(tag, "Error!"); 
  } 
};

不仅基本使用方式一样,实质上,在 RxJava 的 subscribe 过程中,Observer 也总是会先被转换成一个 Subscriber 再使用。所以如果你只想使用基本功能,选择 Observer 和 Subscriber 是完全一样的。它们的区别对于使用者来说主要有两点:

onStart(): 这是 Subscriber 增加的方法。它会在 subscribe 刚开始,而事件还未发送之前被调用,可以用于做一些准备工作,例如数据的清零或重置。这是一个可选方法,默认情况下它的实现为空。需要注意的是,如果对准备工作的线程有要求(例如弹出一个显示进度的对话框,这必须在主线程执行), onStart() 就不适用了,因为它总是在 subscribe 所发生的线程被调用,而不能指定线程。要在指定的线程来做准备工作,可以使用 doOnSubscribe() 方法,具体可以在后面的文中看到。

unsubscribe(): 这是 Subscriber 所实现的另一个接口 Subscription 的方法,用于取消订阅。在这个方法被调用后,Subscriber 将不再接收事件。一般在这个方法调用前,可以使用 isUnsubscribed() 先判断一下状态。 unsubscribe() 这个方法很重要,因为在 subscribe() 之后, Observable 会持有 Subscriber 的引用,这个引用如果不能及时被释放,将有内存泄露的风险。所以最好保持一个原则:要在不再使用的时候尽快在合适的地方(例如 onPause() onStop() 等方法中)调用 unsubscribe() 来解除引用关系,以避免内存泄露的发生。

2) 创建 Observable

Observable 即被观察者,它决定什么时候触发事件以及触发怎样的事件。 RxJava 使用 create() 方法来创建一个 Observable ,并为它定义事件触发规则:

Observable observable = Observable.create(new Observable.OnSubscribe() { 
  @Override 
  public void call(Subscriber subscriber) { 
    subscriber.onNext("Hello"); 
    subscriber.onNext("Hi"); 
    subscriber.onNext("Aloha"); 
    subscriber.onCompleted(); 
  } 
});

可以看到,这里传入了一个 OnSubscribe 对象作为参数。OnSubscribe 会被存储在返回的 Observable 对象中,它的作用相当于一个计划表,当 Observable 被订阅的时候,OnSubscribe 的 call() 方法会自动被调用,事件序列就会依照设定依次触发(对于上面的代码,就是观察者Subscriber 将会被调用三次 onNext() 和一次 onCompleted())。这样,由被观察者调用了观察者的回调方法,就实现了由被观察者向观察者的事件传递,即观察者模式

create() 方法是 RxJava 最基本的创造事件序列的方法。基于这个方法, RxJava 还提供了一些方法用来快捷创建事件队列,例如:

just(T...): 将传入的参数依次发送出来。

Observable observable = Observable.just("Hello", "Hi", "Aloha"); 
// 将会依次调用: 
// onNext("Hello"); 
// onNext("Hi"); 
// onNext("Aloha"); 
// onCompleted();

from(T[]) / from(Iterable) : 将传入的数组或 Iterable 拆分成具体对象后,依次发送出来。

String[] words = {"Hello", "Hi", "Aloha"}; 
Observable observable = Observable.from(words); 
// 将会依次调用: 
// onNext("Hello"); 
// onNext("Hi"); 
// onNext("Aloha"); 
// onCompleted();

上面 just(T...) 的例子和 from(T[]) 的例子,都和之前的 create(OnSubscribe) 的例子是等价的。

3) Subscribe (订阅)

创建了 Observable 和 Observer 之后,再用 subscribe() 方法将它们联结起来,整条链子就可以工作了。代码形式很简单:

observable.subscribe(observer); 
// 或者: 
observable.subscribe(subscriber);

Observable.subscribe(Subscriber) 的内部实现是这样的(仅核心代码):

// 注意:这不是 subscribe() 的源码,而是将源码中与性能、兼容性、扩展性有关的代码剔除后的核心代码。 
// 如果需要看源码,可以去 RxJava 的 GitHub 仓库下载。 
public Subscription subscribe(Subscriber subscriber) { 
  subscriber.onStart(); 
  onSubscribe.call(subscriber); 
  return subscriber; 
}

可以看到,subscriber() 做了3件事:

1.调用 Subscriber.onStart() 。这个方法在前面已经介绍过,是一个可选的准备方法。

2.调用 Observable 中的 OnSubscribe.call(Subscriber) 。在这里,事件发送的逻辑开始运行。从这也可以看出,在 RxJava 中, Observable 并不是在创建的时候就立即开始发送事件,而是在它被订阅的时候,即当 subscribe() 方法执行的时候。

3.将传入的 Subscriber 作为 Subscription 返回。这是为了方便 unsubscribe().
除了 subscribe(Observer) 和 subscribe(Subscriber) ,subscribe() 还支持不完整定义的回调,RxJava 会自动根据定义创建出 Subscriber 。形式如下:

Action1 onNextAction = new Action1() { 
  // onNext() 
  @Override 
  public void call(String s) { 
    Log.d(tag, s); 
  } 
}; 
Action1 onErrorAction = new Action1() { 
  // onError() 
  @Override 
  public void call(Throwable throwable) { 
    // Error handling 
  } 
}; 
Action0 onCompletedAction = new Action0() { 
  // onCompleted() 
  @Override 
  public void call() { 
    Log.d(tag, "completed"); 
  } 
}; 
 
// 自动创建 Subscriber ,并使用 onNextAction 来定义 onNext() 
observable.subscribe(onNextAction); 
// 自动创建 Subscriber ,并使用 onNextAction 和 onErrorAction 来定义 onNext() 和 onError() 
observable.subscribe(onNextAction, onErrorAction); 
// 自动创建 Subscriber ,并使用 onNextAction、 onErrorAction 和 onCompletedAction 来定义 onNext()、 onError() 和 onCompleted() 
observable.subscribe(onNextAction, onErrorAction, onCompletedAction);

简单解释一下这段代码中出现的 Action1 和 Action0。 Action0 是 RxJava 的一个接口,它只有一个方法 call(),这个方法是无参无返回值的;由于 onCompleted() 方法也是无参无返回值的,因此 Action0 可以被当成一个包装对象,将 onCompleted() 的内容打包起来将自己作为一个参数传入 subscribe() 以实现不完整定义的回调。这样其实也可以看做将 onCompleted() 方法作为参数传进了 subscribe(),相当于其他某些语言中的『闭包』。 Action1 也是一个接口,它同样只有一个方法 call(T param),这个方法也无返回值,但有一个参数;与 Action0 同理,由于 onNext(T obj) 和 onError(Throwable error) 也是单参数无返回值的,因此 Action1 可以将 onNext(obj) 和 onError(error) 打包起来传入 subscribe() 以实现不完整定义的回调。事实上,虽然 Action0 和 Action1 在 API 中使用最广泛,但 RxJava 是提供了多个 ActionX 形式的接口 (例如 Action2, Action3) 的,它们可以被用以包装不同的无返回值的方法。

4) 场景示例

下面举两个例子:

a. 打印字符串数组

将字符串数组 names 中的所有字符串依次打印出来:

String[] names = ...; 
Observable.from(names) 
  .subscribe(new Action1() { 
    @Override 
    public void call(String name) { 
      Log.d(tag, name); 
    } 
  });

b. 由 id 取得图片并显示

由指定的一个 drawable 文件 id drawableRes 取得图片,并显示在 ImageView 中,并在出现异常的时候打印 Toast 报错:

int drawableRes = ...; 
ImageView imageView = ...; 
Observable.create(new OnSubscribe() { 
  @Override 
  public void call(Subscriber subscriber) { 
    Drawable drawable = getTheme().getDrawable(drawableRes)); 
    subscriber.onNext(drawable); 
    subscriber.onCompleted(); 
  } 
}).subscribe(new Observer() { 
  @Override 
  public void onNext(Drawable drawable) { 
    imageView.setImageDrawable(drawable); 
  } 
 
  @Override 
  public void onCompleted() { 
  } 
 
  @Override 
  public void onError(Throwable e) { 
    Toast.makeText(activity, "Error!", Toast.LENGTH_SHORT).show(); 
  } 
});

正如上面两个例子这样,创建出 Observable 和 Subscriber ,再用 subscribe() 将它们串起来,一次 RxJava 的基本使用就完成了。非常简单。

注意:在 RxJava 的默认规则中,事件的发出和消费都是在同一个线程的。也就是说,如果只用上面的方法,实现出来的只是一个同步的观察者模式。观察者模式本身的目的就是『后台处理,前台回调』的异步机制,因此异步对于 RxJava 是至关重要的。而要实现异步,则需要用到 RxJava 的另一个概念: Scheduler 。

线程控制 —— Scheduler (一)

前言:

在不指定线程的情况下, RxJava 遵循的是线程不变的原则,即:在哪个线程调用 subscribe(),就在哪个线程生产事件;在哪个线程生产事件,就在哪个线程消费事件。如果需要切换线程,就需要用到 Scheduler (调度器)。

1) Scheduler 的 API (一)

在RxJava 中,Scheduler ——调度器,相当于线程控制器,RxJava 通过它来指定每一段代码应该运行在什么样的线程。RxJava 已经内置了几个 Scheduler ,它们已经适合大多数的使用场景:

Schedulers.immediate(): 直接在当前线程运行,相当于不指定线程。这是默认的 Scheduler。

Schedulers.newThread(): 总是启用新线程,并在新线程执行操作。

Schedulers.io(): I/O 操作(读写文件、读写数据库、网络信息交互等)所使用的 Scheduler。行为模式和 newThread() 差不多,区别在于 io() 的内部实现是是用一个无数量上限的线程池,可以重用空闲的线程,因此多数情况下 io() 比 newThread() 更有效率。不要把计算工作放在 io() 中,可以避免创建不必要的线程。

Schedulers.computation(): 计算所使用的 Scheduler。这个计算指的是 CPU 密集型计算,即不会被 I/O 等操作限制性能的操作,例如图形的计算。这个 Scheduler 使用的固定的线程池,大小为 CPU 核数。不要把 I/O 操作放在 computation() 中,否则 I/O 操作的等待时间会浪费 CPU。

另外, Android 还有一个专用的 AndroidSchedulers.mainThread(),它指定的操作将在 Android 主线程运行。

有了这几个 Scheduler ,就可以使用 subscribeOn() 和 observeOn() 两个方法来对线程进行控制了。 * subscribeOn(): 指定 subscribe() 所发生的线程,即 Observable.OnSubscribe 被激活时所处的线程。或者叫做事件产生的线程。 * observeOn(): 指定 Subscriber 所运行在的线程。或者叫做事件消费的线程。

代码来理解上面的文字叙述:

Observable.just(1, 2, 3, 4) 
  .subscribeOn(Schedulers.io()) // 指定 subscribe() 发生在 IO 线程 
  .observeOn(AndroidSchedulers.mainThread()) // 指定 Subscriber 的回调发生在主线程 
  .subscribe(new Action1() { 
    @Override 
    public void call(Integer number) { 
      Log.d(tag, "number:" + number); 
    } 
  });

上面这段代码中,由于 subscribeOn(Schedulers.io()) 的指定,被创建的事件的内容 1、2、3、4 将会在 IO 线程发出;而由于 observeOn(AndroidScheculers.mainThread()) 的指定,因此 subscriber 数字的打印将发生在主线程 。事实上,这种在 subscribe() 之前写上两句 subscribeOn(Scheduler.io()) 和 observeOn(AndroidSchedulers.mainThread()) 的使用方式非常常见,它适用于多数的 『后台线程取数据,主线程显示』的程序策略。

而前面提到的由图片 id 取得图片并显示的例子,如果也加上这两句:

int drawableRes = ...; 
ImageView imageView = ...; 
Observable.create(new OnSubscribe() { 
  @Override 
  public void call(Subscriber subscriber) { 
    Drawable drawable = getTheme().getDrawable(drawableRes)); 
    subscriber.onNext(drawable); 
    subscriber.onCompleted(); 
  } 
}) 
.subscribeOn(Schedulers.io()) // 指定 subscribe() 发生在 IO 线程 
.observeOn(AndroidSchedulers.mainThread()) // 指定 Subscriber 的回调发生在主线程 
.subscribe(new Observer() { 
  @Override 
  public void onNext(Drawable drawable) { 
    imageView.setImageDrawable(drawable); 
  } 
  @Override 
  public void onCompleted() { 
  } 
  @Override 
  public void onError(Throwable e) { 
    Toast.makeText(activity, "Error!", Toast.LENGTH_SHORT).show(); 
  } 
});

那么,加载图片将会发生在 IO 线程,而设置图片则被设定在了主线程。这就意味着,即使加载图片耗费了几十甚至几百毫秒的时间,也不会造成丝毫界面的卡顿。

2) Scheduler 的原理 (一)

RxJava 的 Scheduler API 很方便,也很神奇(加了一句话就把线程切换了,怎么做到的?而且 subscribe() 不是最外层直接调用的方法吗,它竟然也能被指定线程?)。然而 Scheduler 的原理需要放在后面讲,因为它的原理是以下一节《变换》的原理作为基础的。

好吧这一节其实我屁也没说,只是为了让你安心,让你知道我不是忘了讲原理,而是把它放在了更合适的地方。

变换

RxJava 提供了对事件序列进行变换的支持,这是它的核心功能之一,也是大多数人说『RxJava 真是太好用了』的大原因。所谓变换,就是将事件序列中的对象或整个序列进行加工处理,转换成不同的事件或事件序列。概念说着总是模糊难懂的,来看 API。

1) API

首先看一个 map() 的例子:

Observable.just("images/logo.png") // 输入类型 String 
  .map(new Func1() { 
    @Override 
    public Bitmap call(String filePath) { // 参数类型 String 
      return getBitmapFromPath(filePath); // 返回类型 Bitmap 
    } 
  }) 
  .subscribe(new Action1() { 
    @Override 
    public void call(Bitmap bitmap) { // 参数类型 Bitmap 
      showBitmap(bitmap); 
    } 
  });

这里出现了一个叫做 Func1 的类。它和 Action1 非常相似,也是 RxJava 的一个接口,用于包装含有一个参数的方法。 Func1 和 Action 的区别在于, Func1 包装的是有返回值的方法。另外,和 ActionX 一样, FuncX 也有多个,用于不同参数个数的方法。FuncX 和 ActionX 的区别在 FuncX 包装的是有返回值的方法。

可以看到,map() 方法将参数中的 String 对象转换成一个 Bitmap 对象后返回,而在经过 map() 方法后,事件的参数类型也由 String 转为了 Bitmap。这种直接变换对象并返回的,是最常见的也最容易理解的变换。不过 RxJava 的变换远不止这样,它不仅可以针对事件对象,还可以针对整个事件队列,这使得 RxJava 变得非常灵活。我列举几个常用的变换:

map(): 事件对象的直接变换,具体功能上面已经介绍过。它是 RxJava 最常用的变换。

flatMap(): 这是一个很有用但非常难理解的变换,因此我决定花多些篇幅来介绍它。 首先假设这么一种需求:假设有一个数据结构『学生』,现在需要打印出一组学生的名字。实现方式很简单:

Student[] students = ...; 
Subscriber subscriber = new Subscriber() { 
  @Override 
  public void onNext(String name) { 
    Log.d(tag, name); 
  } 
  ... 
}; 
Observable.from(students) 
  .map(new Func1() { 
    @Override 
    public String call(Student student) { 
      return student.getName(); 
    } 
  }) 
  .subscribe(subscriber);

很简单。那么再假设:如果要打印出每个学生所需要修的所有课程的名称呢?(需求的区别在于,每个学生只有一个名字,但却有多个课程。)首先可以这样实现:

Student[] students = ...; 
Subscriber subscriber = new Subscriber() { 
  @Override 
  public void onNext(Student student) { 
    List courses = student.getCourses(); 
    for (int i = 0; i < courses.size(); i++) { 
      Course course = courses.get(i); 
      Log.d(tag, course.getName()); 
    } 
  } 
  ... 
}; 
Observable.from(students) 
  .subscribe(subscriber);

依然很简单。那么如果我不想在 Subscriber 中使用 for 循环,而是希望 Subscriber 中直接传入单个的 Course 对象呢(这对于代码复用很重要)?用 map() 显然是不行的,因为 map() 是一对一的转化,而我现在的要求是一对多的转化。那怎么才能把一个 Student 转化成多个 Course 呢?

这个时候,就需要用 flatMap() 了:

Student[] students = ...; 
Subscriber subscriber = new Subscriber() { 
  @Override 
  public void onNext(Course course) { 
    Log.d(tag, course.getName()); 
  } 
  ... 
}; 
Observable.from(students) 
  .flatMap(new Func1>() { 
    @Override 
    public Observable call(Student student) { 
      return Observable.from(student.getCourses()); 
    } 
  }) 
  .subscribe(subscriber);

从上面的代码可以看出, flatMap() 和 map() 有一个相同点:它也是把传入的参数转化之后返回另一个对象。但需要注意,和 map() 不同的是, flatMap() 中返回的是个 Observable 对象,并且这个 Observable 对象并不是被直接发送到了 Subscriber 的回调方法中。 flatMap() 的原理是这样的:1. 使用传入的事件对象创建一个 Observable 对象;2. 并不发送这个 Observable, 而是将它激活,于是它开始发送事件;3. 每一个创建出来的 Observable 发送的事件,都被汇入同一个 Observable ,而这个 Observable 负责将这些事件统一交给 Subscriber 的回调方法。这三个步骤,把事件拆成了两级,通过一组新创建的 Observable 将初始的对象『铺平』之后通过统一路径分发了下去。而这个『铺平』就是 flatMap() 所谓的 flat。

扩展:由于可以在嵌套的 Observable 中添加异步代码, flatMap() 也常用于嵌套的异步操作,例如嵌套的网络请求。示例代码(Retrofit + RxJava):

networkClient.token() // 返回 Observable,在订阅时请求 token,并在响应后发送 token 
  .flatMap(new Func1>() { 
    @Override 
    public Observable call(String token) { 
      // 返回 Observable,在订阅时请求消息列表,并在响应后发送请求到的消息列表 
      return networkClient.messages(); 
    } 
  }) 
  .subscribe(new Action1() { 
    @Override 
    public void call(Messages messages) { 
      // 处理显示消息列表 
      showMessages(messages); 
    } 
  });

传统的嵌套请求需要使用嵌套的 Callback 来实现。而通过 flatMap() ,可以把嵌套的请求写在一条链中,从而保持程序逻辑的清晰。

throttleFirst(): 在每次事件触发后的一定时间间隔内丢弃新的事件。常用作去抖动过滤,例如按钮的点击监听器: RxView.clickEvents(button) // RxBinding 代码,后面的文章有解释 .throttleFirst(500, TimeUnit.MILLISECONDS) // 设置防抖间

隔为 500ms .subscribe(subscriber); 妈妈再也不怕我的用户手抖点开两个重复的界面啦。
此外, RxJava 还提供很多便捷的方法来实现事件序列的变换,这里就不一一举例了。

2) 变换的原理:lift()

这些变换虽然功能各有不同,但实质上都是针对事件序列的处理和再发送。而在 RxJava 的内部,它们是基于同一个基础的变换方法: lift(Operator)。首先看一下 lift() 的内部实现(仅核心代码):

// 注意:这不是 lift() 的源码,而是将源码中与性能、兼容性、扩展性有关的代码剔除后的核心代码。
// 如果需要看源码,可以去 RxJava 的 GitHub 仓库下载。

public  Observable lift(Operator operator) { 
  return Observable.create(new OnSubscribe() { 
    @Override 
    public void call(Subscriber subscriber) { 
      Subscriber newSubscriber = operator.call(subscriber); 
      newSubscriber.onStart(); 
      onSubscribe.call(newSubscriber); 
    } 
  }); 
}

这段代码很有意思:它生成了一个新的 Observable 并返回,而且创建新 Observable 所用的参数 OnSubscribe 的回调方法 call() 中的实现竟然看起来和前面讲过的 Observable.subscribe() 一样!然而它们并不一样哟~不一样的地方关键就在于第二行 onSubscribe.call(subscriber) 中的 onSubscribe 所指代的对象不同(高能预警:接下来的几句话可能会导致身体的严重不适)——

subscribe() 中这句话的 onSubscribe 指的是 Observable 中的 onSubscribe 对象,这个没有问题,但是 lift() 之后的情况就复杂了点。

当含有 lift() 时:

1.lift() 创建了一个 Observable 后,加上之前的原始 Observable,已经有两个 Observable 了;

2.而同样地,新 Observable 里的新 OnSubscribe 加上之前的原始 Observable 中的原始 OnSubscribe,也就有了两个 OnSubscribe;

3.当用户调用经过 lift() 后的 Observable 的 subscribe() 的时候,使用的是 lift() 所返回的新的 Observable ,于是它所触发的 onSubscribe.call(subscriber),也是用的新 Observable 中的新 OnSubscribe,即在 lift() 中生成的那个 OnSubscribe;

4.而这个新 OnSubscribe 的 call() 方法中的 onSubscribe ,就是指的原始 Observable 中的原始 OnSubscribe ,在这个 call() 方法里,新 OnSubscribe 利用 operator.call(subscriber) 生成了一个新的 Subscriber(Operator 就是在这里,通过自己的 call() 方法将新 Subscriber 和原始 Subscriber 进行关联,并插入自己的『变换』代码以实现变换),然后利用这个新 Subscriber 向原始 Observable 进行订阅。

这样就实现了 lift() 过程,有点像一种代理机制,通过事件拦截和处理实现事件序列的变换。
精简掉细节的话,也可以这么说:在 Observable 执行了 lift(Operator) 方法之后,会返回一个新的 Observable,这个新的 Observable 会像一个代理一样,负责接收原始的 Observable 发出的事件,并在处理后发送给 Subscriber。

举一个具体的 Operator 的实现。下面这是一个将事件中的 Integer 对象转换成 String 的例子,仅供参考:

observable.lift(new Observable.Operator() { 
  @Override 
  public Subscriber call(final Subscriber subscriber) { 
    // 将事件序列中的 Integer 对象转换为 String 对象 
    return new Subscriber() { 
      @Override 
      public void onNext(Integer integer) { 
        subscriber.onNext("" + integer); 
      } 
      @Override 
      public void onCompleted() { 
        subscriber.onCompleted(); 
      } 
      @Override 
      public void onError(Throwable e) { 
        subscriber.onError(e); 
      } 
    }; 
  } 
});

3) compose: 对 Observable 整体的变换

除了 lift() 之外, Observable 还有一个变换方法叫做 compose(Transformer)。它和 lift() 的区别在于, lift() 是针对事件项和事件序列的,而 compose() 是针对 Observable 自身进行变换。举个例子,假设在程序中有多个 Observable ,并且他们都需要应用一组相同的 lift() 变换。你可以这么写:

observable1 
  .lift1() 
  .lift2() 
  .lift3() 
  .lift4() 
  .subscribe(subscriber1); 
observable2 
  .lift1() 
  .lift2() 
  .lift3() 
  .lift4() 
  .subscribe(subscriber2); 
observable3 
  .lift1() 
  .lift2() 
  .lift3() 
  .lift4() 
  .subscribe(subscriber3); 
observable4 
  .lift1() 
  .lift2() 
  .lift3() 
  .lift4() 
  .subscribe(subscriber1);

你觉得这样太不软件工程了,于是你改成了这样:

private Observable liftAll(Observable observable) { 
  return observable 
    .lift1() 
    .lift2() 
    .lift3() 
    .lift4(); 
} 
... 
liftAll(observable1).subscribe(subscriber1); 
liftAll(observable2).subscribe(subscriber2); 
liftAll(observable3).subscribe(subscriber3); 
liftAll(observable4).subscribe(subscriber4);

可读性、可维护性都提高了。可是 Observable 被一个方法包起来,这种方式对于 Observale 的灵活性似乎还是增添了那么点限制。怎么办?这个时候,就应该用 compose() 来解决了:

public class LiftAllTransformer implements Observable.Transformer { 
  @Override 
  public Observable call(Observable observable) { 
    return observable 
      .lift1() 
      .lift2() 
      .lift3() 
      .lift4(); 
  } 
} 
... 
Transformer liftAll = new LiftAllTransformer(); 
observable1.compose(liftAll).subscribe(subscriber1); 
observable2.compose(liftAll).subscribe(subscriber2); 
observable3.compose(liftAll).subscribe(subscriber3); 
observable4.compose(liftAll).subscribe(subscriber4);

像上面这样,使用 compose() 方法,Observable 可以利用传入的 Transformer 对象的 call 方法直接对自身进行处理,也就不必被包在方法的里面了。

compose() 的原理比较简单,不附图喽。

线程控制:Scheduler (二)

除了灵活的变换,RxJava 另一个牛逼的地方,就是线程的自由控制。

1) Scheduler 的 API (二)

前面讲到了,可以利用 subscribeOn() 结合 observeOn() 来实现线程控制,让事件的产生和消费发生在不同的线程。可是在了解了 map() flatMap() 等变换方法后,有些好事的(其实就是当初刚接触 RxJava 时的我)就问了:能不能多切换几次线程?
答案是:能。因为 observeOn() 指定的是 Subscriber 的线程,而这个 Subscriber 并不是(严格说应该为『不一定是』,但这里不妨理解为『不是』)subscribe() 参数中的 Subscriber ,而是 observeOn() 执行时的当前 Observable 所对应的 Subscriber ,即它的直接下级 Subscriber 。换句话说,observeOn() 指定的是它之后的操作所在的线程。因此如果有多次切换线程的需求,只要在每个想要切换线程的位置调用一次 observeOn() 即可。上代码:

Observable.just(1, 2, 3, 4) // IO 线程,由 subscribeOn() 指定 
  .subscribeOn(Schedulers.io()) 
  .observeOn(Schedulers.newThread()) 
  .map(mapOperator) // 新线程,由 observeOn() 指定 
  .observeOn(Schedulers.io()) 
  .map(mapOperator2) // IO 线程,由 observeOn() 指定 
  .observeOn(AndroidSchedulers.mainThread)  
  .subscribe(subscriber); // Android 主线程,由 observeOn() 指定

如上,通过 observeOn() 的多次调用,程序实现了线程的多次切换。

不过,不同于 observeOn() , subscribeOn() 的位置放在哪里都可以,但它是只能调用一次的。

又有好事的(其实还是当初的我)问了:如果我非要调用多次 subscribeOn() 呢?会有什么效果?

这个问题先放着,我们还是从 RxJava 线程控制的原理说起吧。

2) Scheduler 的原理(二)

其实, subscribeOn() 和 observeOn() 的内部实现,也是用的 lift()。具体看图(不同颜色的箭头表示不同的线程):
从图中可以看出,subscribeOn() 和 observeOn() 都做了线程切换的工作(图中的 "schedule..." 部位)。不同的是, subscribeOn() 的线程切换发生在 OnSubscribe 中,即在它通知上一级 OnSubscribe 时,这时事件还没有开始发送,因此 subscribeOn() 的线程控制可以从事件发出的开端就造成影响;而 observeOn() 的线程切换则发生在它内建的 Subscriber 中,即发生在它即将给下一级 Subscriber 发送事件时,因此 observeOn() 控制的是它后面的线程。

3) 延伸:doOnSubscribe()

然而,虽然超过一个的 subscribeOn() 对事件处理的流程没有影响,但在流程之前却是可以利用的。

在前面讲 Subscriber 的时候,提到过 Subscriber 的 onStart() 可以用作流程开始前的初始化。然而 onStart() 由于在 subscribe() 发生时就被调用了,因此不能指定线程,而是只能执行在 subscribe() 被调用时的线程。这就导致如果 onStart() 中含有对线程有要求的代码(例如在界面上显示一个 ProgressBar,这必须在主线程执行),将会有线程非法的风险,因为有时你无法预测 subscribe() 将会在什么线程执行。

而与 Subscriber.onStart() 相对应的,有一个方法 Observable.doOnSubscribe() 。它和 Subscriber.onStart() 同样是在 subscribe() 调用后而且在事件发送前执行,但区别在于它可以指定线程。默认情况下, doOnSubscribe() 执行在 subscribe() 发生的线程;而如果在 doOnSubscribe() 之后有 subscribeOn() 的话,它将执行在离它最近的 subscribeOn() 所指定的线程。

示例代码:

Observable.create(onSubscribe) 
  .subscribeOn(Schedulers.io()) 
  .doOnSubscribe(new Action0() { 
    @Override 
    public void call() { 
      progressBar.setVisibility(View.VISIBLE); // 需要在主线程执行 
    } 
  }) 
  .subscribeOn(AndroidSchedulers.mainThread()) // 指定主线程 
  .observeOn(AndroidSchedulers.mainThread()) 
  .subscribe(subscriber);

如上,在 doOnSubscribe()的后面跟一个 subscribeOn() ,就能指定准备工作的线程了。

以上是“Rxjava有什么用”这篇文章的所有内容,感谢各位的阅读!相信大家都有了一定的了解,希望分享的内容对大家有所帮助,如果还想学习更多知识,欢迎关注创新互联行业资讯频道!


网站栏目:Rxjava有什么用-创新互联
分享地址:http://myzitong.com/article/jgpoj.html