在分布式数据库中怎么计算count
这篇文章主要介绍“在分布式数据库中怎么计算count”,在日常操作中,相信很多人在在分布式数据库中怎么计算count问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”在分布式数据库中怎么计算count”的疑惑有所帮助!接下来,请跟着小编一起来学习吧!
创新互联公司专注于婺城网站建设服务及定制,我们拥有丰富的企业做网站经验。 热诚为您提供婺城营销型网站建设,婺城网站制作、婺城网页设计、婺城网站官网定制、成都小程序开发服务,打造婺城网络公司原创品牌,更为您提供婺城网站排名全网营销落地服务。
背景
在分布式数据库中,计算count(distinct xxx),需要对distinct 的字段,
1、去重,
2、重分布去重后的数据,(这一步,如果distinct值特别多,那么就会比较耗时)
3、然后再去重,
4、最后count (xxx),
5、求所有节点的count SUM。
例如,以下是Greenplum的执行计划例子
postgres=# explain analyze select count(distinct c_acctbal) from customer; QUERY PLAN -------------------------------------------------------------------------------------------------------------------------------------------------------------------- Aggregate (cost=182242.41..182242.42 rows=1 width=8) Rows out: 1 rows with 0.006 ms to first row, 69 ms to end, start offset by 23 ms. -> Gather Motion 16:1 (slice2; segments: 16) (cost=53392.85..173982.82 rows=660767 width=8) Rows out: 818834 rows at destination with 3.416 ms to first row, 447 ms to end, start offset by 23 ms. -> HashAggregate (cost=53392.85..61652.43 rows=41298 width=8) Group By: customer.c_acctbal Rows out: Avg 51177.1 rows x 16 workers. Max 51362 rows (seg3) with 0.004 ms to first row, 33 ms to end, start offset by 25 ms. -> redistribute Motion 16:16 (slice1; segments: 16) (cost=30266.00..43481.34 rows=41298 width=8) Hash Key: customer.c_acctbal Rows out: Avg 89865.6 rows x 16 workers at destination. Max 90305 rows (seg3) with 18 ms to first row, 120 ms to end, start offset by 25 ms. -> HashAggregate (cost=30266.00..30266.00 rows=41298 width=8) Group By: customer.c_acctbal Rows out: Avg 89865.6 rows x 16 workers. Max 89929 rows (seg2) with 0.007 ms to first row, 33 ms to end, start offset by 26 ms. -> Append-only Columnar Scan on customer (cost=0.00..22766.00 rows=93750 width=8) Rows out: Avg 93750.0 rows x 16 workers. Max 93751 rows (seg4) with 20 ms to first row, 30 ms to end, start offset by 26 ms. Slice statistics: (slice0) Executor memory: 387K bytes. (slice1) Executor memory: 6527K bytes avg x 16 workers, 6527K bytes max (seg0). (slice2) Executor memory: 371K bytes avg x 16 workers, 371K bytes max (seg0). Statement statistics: Memory used: 1280000K bytes Optimizer status: legacy query optimizer Total runtime: 723.143 ms (23 rows)
以下是citus的例子
postgres=# explain analyze select count(distinct bid) from pgbench_accounts ; QUERY PLAN ------------------------------------------------------------------------------------------------------------------------------------------------------------------ Aggregate (cost=0.00..0.00 rows=0 width=0) (actual time=31.748..31.749 rows=1 loops=1) -> Custom Scan (Citus Real-Time) (cost=0.00..0.00 rows=0 width=0) (actual time=31.382..31.510 rows=1280 loops=1) Task Count: 128 Tasks Shown: One of 128 -> Task Node: host=172.24.211.224 port=1921 dbname=postgres -> HashAggregate (cost=231.85..231.95 rows=10 width=4) (actual time=3.700..3.702 rows=10 loops=1) Group Key: bid -> Seq Scan on pgbench_accounts_106812 pgbench_accounts (cost=0.00..212.48 rows=7748 width=4) (actual time=0.017..2.180 rows=7748 loops=1) Planning time: 0.445 ms Execution time: 3.781 ms Planning time: 1.399 ms Execution time: 32.159 ms (13 rows)
对于可估值计算的场景,即不需要精确distinct值的场景,PostgreSQL提供了一个名为hll的插件,可以用来估算distinct元素个数。
citus 结合hll,可以实现超高速的count(distinct xxx),即使distinct值非常非常多,也不慢。
SET citus.count_distinct_error_rate to 0.005; 0.005表示失真度
hll加速citus count(distinct xxx)使用举例
部署
1、所有节点(coordinator 与 worker节点),安装hll软件
yum install -y gcc-c++ cd ~/ git clone https://github.com/citusdata/postgresql-hll cd postgresql-hll . /var/lib/pgsql/.bash_profile USE_PGXS=1 make USE_PGXS=1 make install
2、所有节点(coordinator 与 worker节点),在需要用到HLL的DB中增加插件
su - postgres -c "psql -d postgres -c 'create extension hll;'" su - postgres -c "psql -d newdb -c 'create extension hll;'"
使用举例
1、创建测试表,128 shard
create table test (id int primary key, a int, b int, c int); set citus.shard_count =128; select create_distributed_table('test', 'id');
2、写入10亿测试数据,a字段10唯一值,b字段100唯一值,c字段100万唯一值
insert into test select id, random()*9, random()*99, random()*999999 from generate_series(1,1000000000) t(id);
3、(coordinator节点)设置全局或当前会话级参数,指定失真度,越小失真度越小
SET citus.count_distinct_error_rate to 0.005; newdb=# explain select count(distinct bid) from pgbench_accounts group by bid; QUERY PLAN ------------------------------------------------------------------------------------------------------------------------------- HashAggregate (cost=0.00..0.00 rows=0 width=0) Group Key: remote_scan.worker_column_2 -> Custom Scan (Citus Real-Time) (cost=0.00..0.00 rows=0 width=0) Task Count: 128 Tasks Shown: One of 128 -> Task Node: host=172.24.211.224 port=8001 dbname=newdb -> GroupAggregate (cost=97272.79..105102.29 rows=1000 width=36) Group Key: bid -> Sort (cost=97272.79..99227.04 rows=781700 width=4) Sort Key: bid -> Seq Scan on pgbench_accounts_102008 pgbench_accounts (cost=0.00..20759.00 rows=781700 width=4) (12 rows)
4、对比是否使用HLL加速(少量唯一值,HLL没有性能提升,因为本身就不存在瓶颈)
4.1、未使用hll
newdb=# set citus.count_distinct_error_rate to 0; newdb=# select count(distinct bid) from pgbench_accounts; count ------- 1000 (1 row) Time: 423.364 ms postgres=# set citus.count_distinct_error_rate to 0; postgres=# select count(distinct a) from test; count ------- 10 (1 row) Time: 2392.709 ms (00:02.393)
4.2、使用hll
newdb=# set citus.count_distinct_error_rate to 0.005; newdb=# select count(distinct bid) from pgbench_accounts; count ------- 1000 (1 row) Time: 444.287 ms postgres=# set citus.count_distinct_error_rate to 0.005; postgres=# select count(distinct a) from test; count ------- 10 (1 row) Time: 2375.473 ms (00:02.375)
5、对比是否使用HLL加速(大量唯一值,HLL性能提升显著)
5.1、未使用hll
postgres=# set citus.count_distinct_error_rate to 0; count ---------- 10000000 (1 row) Time: 5826241.205 ms (01:37:06.241)
128个节点,每个节点最多发送10亿/128条数据给coordinator,慢是可以理解的。另一方面,coordinator可以边接收边去重(postgresql 11增加了parallel gather, merge sort等能力,citus coordinator可以借鉴),没必要等所有数据都收完再去重。
5.2、使用hll
postgres=# set citus.count_distinct_error_rate to 0.005; postgres=# select count(distinct (a,c)) from test; count --------- 9999995 (1 row) Time: 4468.749 ms (00:04.469)
6、设置不同的精度参数,性能对比
newdb=# set citus.count_distinct_error_rate to 0.1; newdb=# select count(distinct (aid,bid)) from pgbench_accounts ; count ---------- 94778491 (1 row) Time: 545.301 ms newdb=# set citus.count_distinct_error_rate to 0.01; newdb=# select count(distinct (aid,bid)) from pgbench_accounts ; count ----------- 100293937 (1 row) Time: 554.333 ms -- 推荐设置0.005 newdb=# set citus.count_distinct_error_rate to 0.005; newdb=# select count(distinct (aid,bid)) from pgbench_accounts ; count ----------- 100136086 (1 row) Time: 1053.070 ms (00:01.053) newdb=# set citus.count_distinct_error_rate to 0.001; newdb=# select count(distinct (aid,bid)) from pgbench_accounts ; count ----------- 100422107 (1 row) Time: 9287.934 ms (00:09.288)
到此,关于“在分布式数据库中怎么计算count”的学习就结束了,希望能够解决大家的疑惑。理论与实践的搭配能更好的帮助大家学习,快去试试吧!若想继续学习更多相关知识,请继续关注创新互联网站,小编会继续努力为大家带来更多实用的文章!
本文名称:在分布式数据库中怎么计算count
转载来源:http://myzitong.com/article/pcjhgc.html