在图上发送消息的神经网络MPNN原理和代码实现是怎样的
在图上发送消息的神经网络MPNN原理和代码实现是怎样的,相信很多没有经验的人对此束手无策,为此本文总结了问题出现的原因和解决方法,通过这篇文章希望你能解决这个问题。
创新互联服务项目包括宁夏网站建设、宁夏网站制作、宁夏网页制作以及宁夏网络营销策划等。多年来,我们专注于互联网行业,利用自身积累的技术优势、行业经验、深度合作伙伴关系等,向广大中小型企业、政府机构等提供互联网行业的解决方案,宁夏网站推广取得了明显的社会效益与经济效益。目前,我们服务的客户以成都为中心已经辐射到宁夏省份的部分城市,未来相信会继续扩大服务区域并继续获得客户的支持与信任!
欢迎来到图神经网络的世界,在这里我们在图上构建深度学习模型。你可以认为这很简单。毕竟,我们难道不能重用使用正常数据的模型吗?
其实不是。在图中所有的数据点(节点)是相互连接的。这意味着数据不再是独立的,这使得大多数标准的机器学习模型毫无用处,因为它们的推导都强烈地基于这个假设。为了克服这个问题,可以从图中提取数字数据,或者使用直接对这类数据进行操作的模型。
创建直接在图上工作的模型更为理想,因为我们可以获得更多关于图的结构和属性的信息。在本文中,我们将研究一种专门为此类数据设计的架构,即消息传递神经网络(MPNNs)。
模型的各种变体
在将模型标准化为单个MPNN框架之前,几位独立研究人员已经发布了不同的变体。这种类型的结构在化学中特别流行,可以帮助预测分子的性质。
Duvenaud等人在2015年发表了有关该主题的第一批著作之一[1]。他使用消息传递体系结构从图分子中提取有价值的信息,然后将其转换为单个特征向量。当时,他的工作具有开创性,因为他使体系结构与众不同。实际上是最早可以在图上运行的卷积神经网络体系结构之一。
Duvenaud等人创建的消息传递体系结构。 他将模型定义为可区分的层的堆栈,其中每一层是传递消息的另一轮。修改自[1]
Li等人在2016年对此构架进行了另一尝试[2]。在这里,他们专注于图的顺序输出,例如在图[2]中找到最佳路径。为此,他们将GRU(门控循环单元)嵌入其算法中。
尽管这些算法似乎完全不同,但是它们具有相同的基本概念,即消息在图中的节点之间传递。我们将很快看到如何将这些模型组合成一个框架。
将模型统一到MPNN框架
节点V1的消息传递体系结构的一个非常简单的示例。在这种情况下,一条消息是邻居的隐藏状态的总和。更新函数是消息m和h2之间的平均值。
毕竟,MPNN背后的想法在概念上很简单。
图中的每个节点都具有隐藏状态(即特征向量)。对于每个节点Vt,我们将隐藏状态的函数以及所有相邻节点的边缘与节点Vt本身进行聚合。然后,我们使用获得的消息和该节点的先前隐藏状态来更新节点Vt的隐藏状态。
有3个主要方程式定义图[3]上的MPNN框架。从相邻节点获得的消息由以下公式给出:
从邻居节点获取消息。
它是从邻居获得的所有消息Mt的总和。Mt是取决于隐藏状态和相邻节点边缘的任意函数。我们可以通过保留一些输入参数来简化此功能。在上面的示例中,我们仅求和不同的隐藏状态hw。
然后,我们使用一个简单的方程式更新节点Vt的隐藏状态:
使用先前的隐藏状态和新消息更新节点的状态。
简单地说,通过用新获得的消息mv更新旧的隐藏状态来获得节点Vt的隐藏状态。在上述示例的情况下,更新函数Ut是先前隐藏状态和消息之间的平均值。
我们将此消息传递算法重复指定的次数。之后,我们进入最后的读出阶段。
将获得的隐藏状态映射到描述整个图形的单个特征向量中。
在此步骤中,我们提取所有新近更新的隐藏状态,并创建描述整个图形的最终特征向量。然后可以将此特征向量用作标准机器学习模型的输入。
就是这样!这些是MPNN的基础。这个框架非常强大,因为我们可以定义不同的消息并根据想要实现的功能更新功能。我建议查看[3]以获得更多信息,以了解MPNN模型的不同变体。
MPNN框架标准化了由多个研究人员独立创建的不同消息传递模型。该框架的主要思想包括消息,更新和读出功能,它们在图中的不同节点上运行。MPNN模型的一些变体共享此功能,但是它们的定义不同。
看完上述内容,你们掌握在图上发送消息的神经网络MPNN原理和代码实现是怎样的的方法了吗?如果还想学到更多技能或想了解更多相关内容,欢迎关注创新互联行业资讯频道,感谢各位的阅读!
新闻名称:在图上发送消息的神经网络MPNN原理和代码实现是怎样的
网站URL:http://myzitong.com/article/pcohod.html